Phương trình 3 x 2 - 5 - 81 = 0 có hai nghiệm x1 ; x2. Tính giá trị của tích x1x2
A. -9
B. 9
C. 29
D. -27
giải các phương trình sau
a) \(2^{x^2-1}=256\)
b) \(3^{x^2+3x}=81\)
c) \(2^{x^2-5x}=64\)
d) \(\left(\dfrac{1}{3}\right)^x=243\)
e) \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)
a: \(2^{x^2-1}=256\)
=>\(2^{x^2-1}=2^8\)
=>\(x^2-1=8\)
=>\(x^2=9\)
=>\(x\in\left\{3;-3\right\}\)
b: \(3^{x^2+3x}=81\)
=>\(3^{x^2+3x}=3^4\)
=>\(x^2+3x=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
c: \(2^{x^2-5x}=64\)
=>\(2^{x^2-5x}=2^6\)
=>\(x^2-5x=6\)
=>\(x^2-5x-6=0\)
=>(x-6)(x+1)=0
=>\(\left[{}\begin{matrix}x-6=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^x=243\)
=>\(\left(\dfrac{1}{3}\right)^x=3^5=\left(\dfrac{1}{3}\right)^{-5}\)
=>x=-5
e: \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)
=>\(3^{-x-5}=3^{2x+1}\)
=>-x-5=2x+1
=>-3x=6
=>x=-2
Trong không gian Oxyz, phương trình mặt phẳng tiếp xúc với mặt cầu(S): (x-1)² + (y-2)² + (z-3)²=81 tại điểm P(-5;-4;6) là:
A. 7 x+8 y+67=0
B. 4 x+2 y-9 z+82=0
C. x-4 z+29=0
D. 2 x+2 y-z+24=0
Đáp án D
Mặt cầu (S) có tâm I(1;2;3).
Gọi (α) là mặt phẳng cần tìm. Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có véc-tơ pháp tuyến
Phương trình mặt phẳng (α) là:
-6(x+5)-6(y+4)+3(z-6) = 0 <=> 2x + 2y - z + 24 = 0.
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Giải phương trình.
giúp e với ạaa :< gấp aa :((
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)
\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)
\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)
giải các phương trình và bất phương trính sau
a) x2 - 8x + 16 = 81
b) 2x+2 / 5 + 3 / 10 < 3x-2 / 4
c) 2/ x-2 + 3 / x-3 = 3x-20/ x2
d) 3 ( x -11) -2 ( x+ 11) = 1964
e) | 2x - 3 | =5
G) -2x + 14/x-5 + 5x-3/2x = 8/x(x-5)
giúp mình với ạ, pls :((
a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)
Vậy tập nghiệm của pt là S = { -5 ; 13 }
b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)
\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)
Vậy tập nghiệm của BFT là S = { x | x > 24/7 }
c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)
\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)
tự khử mẫu, làm tiếp nhé, mình bị lười :>
d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)
\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)
Vâỵ tập nghiệm của pt là S = { 2019 }
e, \(\left|2x-3\right|=5\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )
Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1; 4 }
g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)
\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)
Tự khử mẫu tự giải nhá :>
Giải các phương trình sau:
a) 2 x − 10 4 − 5 = 2 x − 3 6 ;
b) x − 9 2 + x 2 − 81 = 0 ;
c) 3 x − 5 − 1 2 x + 9 = 0 ;
d) 1 2 x − 3 − 5 x = 3 2 x 2 − 3 x .
1.Cho phương trình:\(x^2-3x+m-2=0\)(1)
a.Giải phương trình (1) với m=-8
b.Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1\);\(x_2\)thỏa mãn \(x^3_1-x^3_2+9x_1x_2=81\)
a, \(m=-8=>x^2-3x-10=0\)
\(\Delta=\left(-3\right)^2-4\left(-10\right)=49>0\)
=>pt có 2 nghiệm phân biệt \(=>\left[{}\begin{matrix}x1=\dfrac{3+\sqrt{49}}{2}=5\\x2=\dfrac{3-\sqrt{49}}{2}=-2\end{matrix}\right.\)
b, pt(1) \(=>\Delta=\left(-3\right)^2-4\left(m-2\right)=9-4m+8=17-4m\)
pt (1) có 2 nghiệm phân biệt x1,x2 khi \(17-4m>0< =>m< \dfrac{17}{4}\)
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=3\left(1\right)\\x1x2=m-2\end{matrix}\right.\)
\(x1^3-x2^3+9x1x2=81\)
\(=>\left(x1-x2\right)\left(x1^2+x1x2+x2^2\right)+9\left(m-2\right)=81\)
\(=>x1-x2=\dfrac{81-9\left(m-2\right)}{\left[\left(x1+x2\right)^2-x1x2\right]}\)
\(=>x1-x2=\dfrac{99-9m}{\left[3^2-m+2\right]}=\dfrac{99-9m}{11-m}=9\left(2\right)\)
từ (1)(2)=> hệ pt: \(\left\{{}\begin{matrix}x1+x2=3\\x1-x2=9\end{matrix}\right.=>\left\{{}\begin{matrix}x1=6\\x2=-3\end{matrix}\right.\)
\(=>x1x2=6.\left(-3\right)=m-2=>m=-16\left(tm\right)\)
Giải các phương trình sau
1)\(\dfrac{x+1}{85}+\dfrac{x+3}{83}=\dfrac{x+5}{81}+\dfrac{x+7}{79}\)
2)\(\dfrac{x-1}{2015}-\dfrac{x+3}{2011}=\dfrac{x+7}{2007}-\dfrac{x+11}{2003}\)
3)\(\dfrac{x+4}{4}-\dfrac{x-3}{6}=\dfrac{x}{3}\)
4)\(x-\dfrac{x+1}{3}=\dfrac{2x+1}{5}\)
5) \(\dfrac{2x-7}{5}+\dfrac{x+11}{2}=-4\)
giúp em vs ạ, em đang cần gấpem c.ơn trước ạ
1: \(\Leftrightarrow\left(\dfrac{x+1}{85}+1\right)+\left(\dfrac{x+3}{83}+1\right)=\left(\dfrac{x+5}{81}+1\right)+\left(\dfrac{x+7}{79}+1\right)\)
=>x+86=0
=>x=-86
2: \(\Leftrightarrow\left(\dfrac{x-1}{2015}+1\right)-\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+7}{2007}+1\right)-\left(\dfrac{x+11}{2003}+1\right)\)
=>x+2014=0
=>x=-2014
3: \(\Leftrightarrow3\left(x+4\right)-2\left(x-3\right)=4x\)
=>4x=3x+12-2x+6
=>4x=x+18
=>3x=18
=>x=6
4: \(\Leftrightarrow15x-5\left(x+1\right)=3\left(2x+1\right)\)
=>15x-5x-5=6x+3
=>10x-5=6x+3
=>4x=8
=>x=2
5: \(\Leftrightarrow2\left(2x-7\right)+5\left(x+11\right)=-40\)
=>4x-14+5x+55=-40
=>9x+41=-40
=>x=-9
Giải phương trình :
\(x^4-3x^3-9x^2-27x+81=0\)
cho pt x^2 -3x +m-2 =0 gọi x1,x2 là hai nghiệm của phương trình .Tìm giá trị của m để x1^3 -x2^3 +9x1x2=81
Để pt: \(x^2-3x+m-2=0\) có hai nghiệm : \(x_1;x_2\) điều kiện là:
\(\Delta=9-4\left(m-2\right)\ge0\)
<=> \(m\le\frac{17}{4}\)( @@)
Áp dụng định lí viet ta có:
\(\hept{\begin{cases}x_1+x_2=3\\x_1.x_2=m-2\end{cases}}\)=> \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=9-4\left(m-2\right)=17-4m\ge0\)
=> \(x_1-x_2=\sqrt{17-4m}\)
Ta có:
\(x_1^3-x_2^3+9x_1x_2=\left(x_1-x_2\right)^3+3\left(x_1-x_2\right)x_1x_2+9x_1x_2\)
\(=\sqrt{\left(17-4m\right)^3}+3\sqrt{17-4m}\left(m-2\right)+9\left(m-2\right)\)
Theo bài ra ta có phương trình:
\(\sqrt{\left(17-4m\right)^3}+3\sqrt{17-4m}\left(m-2\right)+9\left(m-2\right)=81\)
<=> \(\left(\sqrt{17-4m}\right)^3-3^3+3\left(m-2\right)\left(\sqrt{17-4m}-3\right)=0\)
<=> \(\left(\sqrt{17-4m}-3\right)\left(17-4m+3\sqrt{17-4m}+9+3\left(m-2\right)\right)=0\)
<=> \(\left(\sqrt{17-4m}-3\right)\left(20-m+3\sqrt{17-4m}\right)=0\)
TH1: \(\sqrt{17-4m}-3=0\Leftrightarrow17-4m=9\Leftrightarrow m=2\left(tm@@\right)\)
TH2: \(20-m+3\sqrt{17-4m}=0\)
<=> \(3\sqrt{17-4m}=m-20\)=> \(m-20\ge0\)=> \(m\ge20\) vô lí với (@@)
Vậy m = 2.