Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dân Nguyễn Chí
Xem chi tiết
Võ Đông Anh Tuấn
10 tháng 1 2018 lúc 17:33

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

Nguyễn Trịnh Diệu Linh
Xem chi tiết
Rimuru tempest
15 tháng 11 2018 lúc 22:37

1) \(\left(x-1\right)\left(x+2\right)< 0\Leftrightarrow-2< x< 1\)

vậy \(x=-1;0\)

2) \(\left(x+1\right)\left(2x-4\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-1\end{matrix}\right.\)

vậy \(x=Z\backslash\left\{1;0\right\}\)

3) \(\left(x^2+1\right)\left(x^2-4\right)\le0\)

\(x^2+1\ne0\)

\(\Leftrightarrow x^2-4\le0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le2\)

vậy \(x=-2;-1;0;1;2\)

4) \(\left|x\right|\left(x^2-1\right)\ge0\)

ta có \(\left|x\right|\ge0\)

\(\Leftrightarrow x^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

vậy \(x=Z\backslash\left\{0\right\}\)

Nguyễn Lê Phước Thịnh
17 tháng 6 2022 lúc 22:54

1: (x-1)(x+2)<0

=>-2<x<1

mà x là số nguyên

nên \(x\in\left\{-1;0\right\}\)

2: \(\left(x+1\right)\cdot\left(2x-4\right)>=0\)

=>x>=2 hoặc x<=-1

mà x là số nguyên

nên x=Z\{1;0}

3: \(\Leftrightarrow x^2-4< =0\)

=>-2<=x<=2

mà x là số nguyên

nên \(x\in\left\{-2;-1;0;1;2\right\}\)

4: =>(x2-1)>=0

=>x>=1 hoặc x<=-1

=>x=Z\{0}

Rosie Park
Xem chi tiết
vũ nhung
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 0:12

\(\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt{3x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\dfrac{6x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\dfrac{6}{\sqrt{3x+1}+1}=3\)

\(\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-2\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x-2\right)=-3\)

\(\Rightarrow I-J=6\)

Sâu Kon _ 512
Xem chi tiết
sdds sdaasdsa
24 tháng 3 2023 lúc 12:47

{xI+2yI=5xI+yI−3=0

{xI+2yI=5xI+yI−3=0

sdds sdaasdsa
24 tháng 3 2023 lúc 12:48

{xI+2yI=5xI+yI−3=0

Đỗ Danh Gia Bảo
Xem chi tiết
Nhật Ánh
Xem chi tiết
Mộc Lung Hoa
Xem chi tiết
Phương Trâm
10 tháng 10 2017 lúc 21:02

1,

\(x^2+y^2+y^2=14\)

\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)

\(\Rightarrow-2\left(xy+yz+zx\right)=14\)

\(\Rightarrow xy+yz+zx=-7\)

\(\Rightarrow\left(xy+yz+zx\right)^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)

Ta có: \(x^4+y^4+z^4\)

\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(=14^2-2.49\)

\(=196-98\)

\(=98\)

Phan Tiến Dũng
Xem chi tiết

\(a,\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\frac{11}{15}x=\frac{2}{5}\)

\(x=\frac{6}{11}\)

b,\(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

Vậy

\(\left(3x-1\right).\left(-\frac{1}{2}x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\-\frac{1}{2}x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}}\)\

Vậy

Đào Hâm
Xem chi tiết
Trần Việt Linh
8 tháng 8 2016 lúc 21:53

Bài 1

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Leftrightarrow x^3+y^3-3xyz=-z^3\) (vì x+y=-z)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)