1.Cho PT
x2+2mx+m2-3x+6=0
a) giải PT khi m=5
b) tìm m để PT có nghiệm
3.Cho PT
x2- 2mx-4m-5=0
a) giải PT khi m=2
b) tìm m để pT có nghiệm
b: \(\text{Δ}=\left(-2m\right)^2-4\left(-4m-5\right)\)
\(=4m^2+16m+20\)
\(=4m^2+16m+16+4\)
\(=\left(2m+4\right)^2+4>0\forall m\)
Cho pt: x2-2mx+m2-m+1=0
a)tìm m để phương trình có nghiệm kép. tính nghiệm kép đó
b)tìm m để phương trình có nghiệm
c) gọi x1,x2 là 2 nghiệm của pt. Tìm m để:x1 2+ x22-2x1x2=6
a,để pt có nghiệm kép
\(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)
\(x_1=x_2=\dfrac{2m}{2}=m=1\)
b, để pt có nghiệm \(m\ge1\)
c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)
Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)
\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)
cho pt x2 - 2mx - 2m - 6 =0
a) giải pt khi m=1
b) xác định m để pt có hai nghiệm sao cho x12 + x22 nhỏ nhất
a)
Thế m = 1 vào PT được: \(x^2-2.1.x-2.1-6=0\)
\(\Leftrightarrow m^2-2x-8=0\\ \Delta=4+32=36\\ \left\{{}\begin{matrix}x_1=4\\x_2=-2\end{matrix}\right.\)
b)
Theo vi ét có; \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-6\end{matrix}\right.\)
\(\Delta'=m^2+2m+6=m^2+2m+1+5=\left(m+1\right)^2+5>0\)
PT có 2 nghiệm phân biệt với mọi m.
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4m^2+4m+12\\ =\left(2m\right)^2+2.2m.1+1+11\\ =\left(2m+1\right)^2+11\ge11\)
GTNN của \(x_1^2+x_2^2\) đạt 11 khi \(m=-\dfrac{1}{2}\)
Cho pt x2 – 2mx -4m -5=0
a) Giải pt khi m= -2
b) Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn ½ x12 - ( m – 1 ) x1+x2 – 2m + 33/2 =4059
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
cho pt x2-2(m+1)x+m-4=0
a, Giải pt khi m= -5
b, CMR pt luôn có nghiệm x1, x2 với mọi m
c, Tìm m để pt có 2 nghiệm trái dấu
d, Tìm m để pt có 2 nghiệm dương
e, CMR biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc m
f, Tính giá trị của biểu thức x1-x2
cho pt 5x2-3x+m-1=0
a) giải pt vs m=-7
b) tìm m để pt có 1 nghiệm x1=3/2
c) tìm m để pt có 2 nghiệm phân biệt
d) giairvaf biện luận pt theo m
a.
⇔ \(5x^2-3x+\left(-7\right)-1=0\)
⇔ \(5x^2-3x-8=0\)
Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0
Vì Δ>0 nên pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)
cho pt: x2 -2(m+4)x+m2=0
a) giải phương trình với m=8
b)tìm m để pt có 2 nghiệm thỏa mãn: x12+x22 = -2
c)tìm m để 1 nghiệm là x = -2, tìm nghiệm còn lại
d)tìm m để pt có nghiệm kép! tìm nghiệm kép đó
b, Để phương trình có 2 nghiệm \(\Delta\ge0\)
hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)
\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)
Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)
\(=4m^2+32m+64-2m^2=2m^2+32m+64\)
Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)
a) Thay m=8 vào phương trình, ta được:
\(x^2-2\cdot\left(8+4\right)x+8^2=0\)
\(\Leftrightarrow x^2-24x+64=0\)
\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)
Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)
a, Thay m = 8 vào phương trình trên ta được :
khi đó phương trình tương đương
\(x^2-2\left(8+4\right)x+64=0\Leftrightarrow x^2-24x+64=0\)
Ta có : \(\Delta=\left(-24\right)^2-4.64=320>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{24-\sqrt{320}}{2};x_2=\dfrac{24+\sqrt{320}}{2}\)bạn tự rút gọn nhé
Cho pt x2-2mx-m2-m+2=0
A/ tìm m để pt có nghiệm
B/tính x1+x2và x1×x2 theo m
a,phương trình có nghiệm
`<=>\Delta>=0`
`<=>4m^2-4(m^2-m+2)>=0`
`<=>4m^2-4m^2+4m-8>=0`
`<=>4m>=8`
`<=>m>=2`
b,Áp dụng định lý vi-ét ta có:
`x_1+x_2=-b/a=2m`
`x_1.x_2=c/a=-m^2-m+2`
Cho pt (m-1)x2-2mx+m+1=0
a, CMR pt luôn có 2 nghiệm phân biệt khi m khác 1
b, Xác định m để pt có tích 2 nghiệm bằng 5. Từ đó hãy tính tổng các nghiệm của pt
c, Tìm một hệ thức liên hệ giữa các nghiệm của pt không phụ thuộc vào m
d, Tìm m để pt có 2 nghiệm thỏa mãn x1/x2 + x2/x1 + 5/2 = 0
Với \(m\ne1\):
a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)
b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)
\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)
Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)
c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)
\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)
\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)