Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen nguyen hoang

cho pt: x2 -2(m+4)x+m2=0

a) giải phương trình với m=8

b)tìm m để pt có 2 nghiệm thỏa mãn: x12+x22 = -2

c)tìm m để 1 nghiệm là x = -2, tìm nghiệm còn lại

d)tìm m để pt có nghiệm kép! tìm nghiệm kép đó

Nguyễn Huy Tú
15 tháng 4 2021 lúc 22:23

b, Để phương trình có 2 nghiệm \(\Delta\ge0\)

hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)

\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)

Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)

\(=4m^2+32m+64-2m^2=2m^2+32m+64\)

Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:51

a) Thay m=8 vào phương trình, ta được:

\(x^2-2\cdot\left(8+4\right)x+8^2=0\)

\(\Leftrightarrow x^2-24x+64=0\)

\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)

Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)

Nguyễn Huy Tú
15 tháng 4 2021 lúc 22:17

a, Thay m = 8 vào phương trình trên ta được : 

khi đó phương trình tương đương 

\(x^2-2\left(8+4\right)x+64=0\Leftrightarrow x^2-24x+64=0\)

Ta có : \(\Delta=\left(-24\right)^2-4.64=320>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\dfrac{24-\sqrt{320}}{2};x_2=\dfrac{24+\sqrt{320}}{2}\)bạn tự rút gọn nhé 


Các câu hỏi tương tự
Xxyukitsune _the_moonwol...
Xem chi tiết
Maneki Neko
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Maneki Neko
Xem chi tiết
Candy Moonz
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Ngô Chí Vĩ
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Hoàng Văn Anh
Xem chi tiết