Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 17:44

a)    \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {a^{{{\log }_c}b}} = {a^{{{\log }_a}b.{{\log }_c}a}} \Leftrightarrow {c^{{{\log }_c}b}} = {\left( {{c^{{{\log }_c}a}}} \right)^{{{\log }_a}b}} \Leftrightarrow b = {a^{{{\log }_a}b}} \Leftrightarrow b = b\) (luôn đúng)

Vậy \({\log _c}b = {\log _a}b.{\log _c}a\)

b)    Từ \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}\)

Buddy
Xem chi tiết
Hà Quang Minh
23 tháng 8 2023 lúc 22:44

\(a,a^{log_ab^{\alpha}}=c\Leftrightarrow log_ac=log_ab^{\alpha}\Leftrightarrow c=b^{\alpha}\Rightarrow a^{log_ab^{\alpha}}=b^{\alpha}\\ a^{\alpha log_ab}=c\Leftrightarrow\alpha log_ab=log_ac\Leftrightarrow log_ab^{\alpha}=log_ac\Leftrightarrow b^{\alpha}=c\Rightarrow a^{\alpha log_ab}=b^{\alpha}\\ \Rightarrow a^{log_ab^{\alpha}}=a^{\alpha log_ab}\)

\(b,a^{log_ab^{\alpha}}=a^{\alpha log_ab}\\ \Rightarrow log_ab^{\alpha}=\alpha log_ab\)

Buddy
Xem chi tiết
Hà Quang Minh
23 tháng 8 2023 lúc 22:39

\(a,log_a1=c\Leftrightarrow a^c=1\Leftrightarrow c=0\Rightarrow log_a1=0\\ b,log_aa=c\Leftrightarrow a^c=a\Leftrightarrow c=1\Rightarrow log_aa=1\\ c,log_aa^c=b\Leftrightarrow a^b=a^c\Leftrightarrow b=c\Rightarrow log_aa^c=c\\ d,a^{log_ab}=c\Leftrightarrow log_ab=log_ac\Leftrightarrow b=c\Rightarrow a^{log_ab}=b\)

 

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 0:46

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

Mai Anh
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Quốc Đạt
15 tháng 8 2023 lúc 15:02

a) \(\log_{12}12^3=3.\log_{12}12=3.1=3\)

b) \(\log_{0,5}0,25=\log_{2^{-1}}2^{-2}=\dfrac{-2}{-1}\log_22=2.1=2\)

c) \(\log_aa^{-3}=-3.\log_aa=-3.1=-3\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 13:49

a: \(log_{12}12^3=3\)

b: \(=log_{0.5}0.5^2=2\)

c: \(log_aa^{-3}=-3\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:42

\({a^{\frac{1}{2}}} = b \Leftrightarrow {\log _a}b = \frac{1}{2} \Leftrightarrow 2{\log _a}b = 1\)

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2019 lúc 16:39

Buddy
Xem chi tiết
Mai Trung Hải Phong
15 tháng 8 2023 lúc 19:46

tham khảo

a)Chia cả hai vế của phương trình cho \(2\), ta được:

\(log_2x=-\dfrac{3}{2}\)

Vậy \(log_2x=-\dfrac{3}{2}\)

b) Áp dụng định nghĩa của logarit, ta có:
\(log_2x=-\dfrac{3}{2}\Leftrightarrow2^{-\dfrac{3}{2}}=x\)

Vậy \(x=\dfrac{\sqrt{2}}{4}\)

 

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 13:29

a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)

 \(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)

=>\(log_2\left(mn\right)=log_2m+log_2n\)

b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)

\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)

=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)

Nguyễn Quốc Đạt
14 tháng 8 2023 lúc 20:24

a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)

\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)

b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)

\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)