Lập phương trình tổng quát của mặt phẳng (MNP) với M(1; 1; 1), N(4; 3; 2), P(5; 2; 1).
Trong không gian Oxyz, phương trình tổng quát của mặt phẳng (P) đi qua điểm M(1;-2;3) và song song với mặt phẳng (Oxy) là:
A. x – 1 = 0
B. y + 2 = 0
C. z – 3 = 0
D. Đáp án khác
Đáp án C
Mặt phẳng (Oxy) có phương trình là: z = 0.
Mặt phẳng này có vecto pháp tuyến là: k → = (0; 0; 1)
Vì mặt phẳng (P) song song với mặt phẳng (Oxy)
nên mặt phẳng này nhận vecto n p → = k → = (0; 0; 1) làm vecto pháp tuyến.
Mặt khác (P) đi qua điểm M(1;-2;3) nên (P) có phương trình là:
1.(z - 3) = 0 ⇔ z - 3 = 0
Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh A(1; 3), B(-1;- 1), C(5 - 3). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC.
Đường cao AH đi qua điểm \(A\left( { - 1;5} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{AH}}} = \overrightarrow {BC} = \left( {4; - 2} \right)\).
Phương trình tổng quát của AH là \(4\left( {x + 1} \right) - 2\left( {y - 5} \right) = 0 \Leftrightarrow 2x - y + 7 = 0\).
Trong mặt phẳng Oxy cho A (4;1), B (-2;3), C (5;-1). a) Viết phương trình tham số và trình tổng quát của đường thẳng đi qua hai điểm A,C b) Viết phương trình tham số và trình tổng quát của đường thẳng A và vuông góc với B,C c) Viết phương trình tham số và trình tổng quát của đường thẳng qua A và song song với đường thẳng d : 2x - y + 3 = 0
trong mặt phẳng Oxy cho điểm (2,1)và đường thẳng ∆:x-y+1=0.Viết phương trình tổng quát của đường thẳng d qua điểm M và somg song với đường thẳng A
Vì (d)//Δ nên (d): x-y+c=0
Thay x=2 và y=1 vào (d), ta được:
c+2-1=0
=>c=-1
trong mặt phẳng Oxy cho tam giác ABC với điểm A<-4,2> B<-3,-2>C <1,0>
a, viết phương trình tổng quát của đường thẳng d đi qua A và vuông góc với đường thẳng BC
b, viết phương trình tổng quát đường thẳng d, đi A cắt cạnh BC tại M sao cho diện tích tam giác ABM bằng diện tích tam giác ACM
c, tìm điiểm I thuộc đường thẳng Δ x-y+1 bằng 0 sao cho|IA +IB| đạy giá trị nhỏ nhất
Trong không gian Oxyz, cho tứ diện ABCD với A(2;-4;6) và ba điểm B, C, D cùng thuộc mặt phẳng (Oyz). Gọi M, N, P lần lượt là trung điểm của AB, AC, AD. Lập phương trình mặt phẳng (MNP)
A. x + 1 = 0
B. x - 1 = 0
C. y + z - 1 = 0
D. x = 1 + t, y = -2, z = 3
Đáp án B
* Tam giác ABC có MN là đường trung bình nên MN // BC (1)
Tam giác ACD có NP là đường trung bình nên NP // CD (2)
Từ (1) và (2) suy ra: (MNP) song song mp( BCD) hay (MNP) song song mp(Oyz).
* Mà mặt phẳng (Oyz) có 1 vecto pháp tuyến là i → (1; 0; 0) nên mặt phẳng (MNP) có VTPT i → (1; 0; 0).
* Điểm O(0; 0; 0). Gọi I(1; -2; 3) là trung điểm của AO. Suy ra; điểm I thuộc mặt phẳng (MNP).
* Phương trình mặt phẳng (MNP) là:
1(x- 1) + 0(y+ 2) + 0( z- 3) =0 hay x- 1= 0
Chọn B.
Trong mặt phẳng tọa độ Oxyz, cho phương trình tổng quát của mặt phẳng (P): 2x - 6y - 8z+ 1 = 0. Một véc tơ pháp tuyến của mặt phẳng ( P) có tọa độ là
A. (-1;3;4)
B. (1;3;4)
C. (1;-3;-4)
D. (1;-3;4)
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm M(1;2) và vuông góc với đường thẳng d: 4x+2y+1=0 có phương trình tổng quát là
A. 4x-2y+3=0
B. 2x-4y+4=0
C. 2x-4y-6=0
D. x-2y+3=0
Trong không gian Oxyz, phương trình tổng quát của mặt phẳng (Oxy) là:
A. x=0
B. y=0
C. z=0
D. x+y=0
Đáp án C
Phương trình mặt phẳng (Oxy) là z = 0.