Cho dãy số (un) được xác định bởi : u 0 = 2011 u n + 1 = u n 2 u n + 1 , ∀ n = 1 , 2 , . . . . . Khẳng định nào sau đây đúng
A. Dãy (un) là dãy giảm
B. Dãy (un) là dãy tăng
C. Dãy (un) là dãy không tăng, không giảm
D. A, B, C đều sai
Cho dãy số u n được xác định bởi u 1 = 2 u n + 1 = 4 u n + 9
Dãy số v n xác định bởi v n = u n + 3 , với mọi n ≥ 1 . Khẳng định nào dưới đây đúng?
A. Dãy v n là cấp số cộng với công sai d=3 .
B. Dãy v n là cấp số nhân với công bội q=4.
C. Dãy v n là cấp số cộng với công sai d=4 .
D. Dãy v n là cấp số nhân với công bội q= 9
Cho dãy số (un) được xác định bởi : u 0 = 2011 u n + 1 = u n 2 u n + 1 , ∀ n = 1 , 2 . . . Tìm phần nguyên của (un) với 0 ≤ n ≤ 1006.
A. [un] = 2014 – n
B. [un] = 2011 – n
C. [un] = 2013 – n
D. [un] = 2012 – n
Chọn B.
Ta có:
Suy ra: un+1 > u0 – (n – 1) = 2012 – n
Mặt khác: un = (un – un-1) + (un-1 – un-2) + … + (u1 – u0) + u0
Mà:
Suy ra un < u0 – n + 1 = 2012 – n
Do đó: 2011 – n < un < 2012 – n ⇒ [un] = 2011 – n
Vì u0 = 2011 và
nên [u0] = 2011 – 0, [u1] = 2010 = 2011 – 1
Vậy [un] = 2011 – n,
1) cho dãy số được xác định bởi
a) Tính
2) cho dãy số được xác định bởi
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Cho dãy số ( u n ) được xác định bởi: u 0 = 2011 u n + 1 = u n + 1 u n 2 . Tìm l i m u n 3 n .
Cho dãy số u n được xác định bởi u 1 = 1 ; u n + 1 = 1 2 u n + 2 u n với mọi n ≥ 1 . Tìm lim u n
A. 1
B. -1
C. 2
D. - 2
Cho dãy số u n được xác định bởi u 1 = 1 , u n + 1 = 1 2 u n + 2 u n với mọi n ≥ 1 . Tìm giới hạn của u n
A. l i m u n = 1
B. l i m u n = - 1
C. l i m u n = 2
D. l i m u n = - 2
Chọn C.
Phương pháp : Dãy số giảm bị chặn dưới thì có giới hạn.
Cách giải : Dễ thấy dãy số đã cho là dãy số dương.
Vậy dãy số đã cho giảm và bị chặn dưới nên có giới hạn.
Cho dãy số u n xác định bởi u n = 2 n . sin n 9 n . Tính l i m u n
A. 0
B. 2 9
C. + ∞
D. 9 2
Đáp án A
- Theo công thức giới hạn đặc biệt, ta có:
Cho dãy số u n xác định bởi u n = 2 n . sin n 9 n . Tính lim u n
A. 0
B. 2 9
C. + ∞
D. 9 2
- Theo công thức giới hạn đặc biệt, ta có:
Chọn A
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số u n xác định bởi u 1 = 5 và u n + 1 = 3 + u n . Số hạng tổng quát của dãy số này là:
A. u n = 8 + n
B. u n = 2 + 3 n
C. u n = 5 + 3 n
D. u n = 5 . 3 n
Chọn B.
- Ta có, u 1 = 5 và u n + 1 = 3 + u n nên dãy số là cấp số cộng với công sai d = 3, số hạng đầu u 1 = 5 .
- Do đó số hạng tổng quát của dãy số này là: