Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn AT
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 20:38

a: Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{A}=180^0-75^0-45^0=60^0\)

Xét ΔABC có

\(\dfrac{AB}{sinC}=\dfrac{BC}{sinA}\)

=>\(\dfrac{AB}{sin45}=\dfrac{50}{sin60}\)

=>\(AB\simeq40,82\)

b: \(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC=\dfrac{1}{2}\cdot40,82\cdot50\cdot sin75\simeq985,73\)

c: Độ dài đường cao xuất phát từ A là:

\(2\cdot\dfrac{985.73}{50}=39,4292\left(\right)\)

Trường Nguyễn Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 16:21

góc C=180-75-45=60 độ

Xét ΔABC có AB/sinC=AC/sinB

=>AB/sin60=2/sin45

=>\(AB=\sqrt{6}\)

HT.Phong (9A5)
30 tháng 8 2023 lúc 18:24

Ta có: 

\(\widehat{C}=180^o-75^o-45^o=60^o\)

Xét tam giác ABC ta có:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)

\(\Rightarrow AB=\dfrac{ACsinC}{sinB}\)

\(\Rightarrow AB=\dfrac{2\cdot sin60^o}{sin45^o}\)

\(\Rightarrow AB=\sqrt{6}\)

Vậy: ...

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:40

Áp dụng định lí sin trong tam giác ABC, ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {60^o}.\frac{{12}}{{\sin {{45}^o}}} = 6\sqrt 6 \)

Lại có: \(\widehat A = {180^o} - ({60^o} + {45^o}) = {75^o}\)

\( \Rightarrow \)Diện tích tam giác ABC là:

\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.12.6\sqrt 6 .\sin {75^o} \approx 85,2\)

Vậy diện tích tam giác ABC là 85,2.

Quân Lê
Xem chi tiết
wattif
2 tháng 3 2020 lúc 18:02

a) Xét tam giác vuông ABC tại A có:

\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)

Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 90^o-45^o\Rightarrow\widehat{C}< 45^o\)(đpcm)

b) Áp dụng mối quan hệ giữa góc và cạnh trong tam giác, ta thấy:

- Do \(\widehat{C}< 45^o< \widehat{B}\Leftrightarrow AB< AC\)

- Do \(\widehat{A}=90^o\Leftrightarrow\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:26

Áp dụng định lí sin trong tam giác ABC ta có:

 \(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\)

\( \Rightarrow R = \dfrac{a}{{2\sin A}};\;\;b = \dfrac{{a.\sin B}}{{\sin A}}\)

Mà \(a = 10,\widehat A = {45^o},\widehat B = {70^o}\)

\( \Rightarrow R = \dfrac{{10}}{{2\sin {{45}^o}}} = 5\sqrt 2 ;\;\;b = \dfrac{{a.\sin {{70}^o}}}{{\sin {{45}^o}}} \approx 13,29\)

Mặt khác: \(\widehat A = {45^o},\widehat B = {70^o} \Rightarrow \widehat C = {65^o}\)

Từ định lí sin ta suy ra: \(c = \dfrac{{a.\sin C}}{{\sin A}} = \dfrac{{10.\sin {{65}^o}}}{{\sin {{45}^o}}} \approx 12,82.\)

Vậy \(R = 5\sqrt 2 ;\;\;b \approx 13,29\); \(c \approx 12,82.\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 22:52

undefined

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 22:51

Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)

Trong tam giác vuông ABH

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)

Trong tam giác vuông ACH: 

\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)

\(\Rightarrow\left(4-x\right)tan70^0=x\)

\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)

\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)

\(\Rightarrow CH=AH=2,2\left(cm\right)\)

\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:31

Theo định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\quad (*)\)

+) Ta có: \(\hat A = {180^o} - \left( {\hat B + \;\hat C} \right) = {180^o} - \left( {{{60}^o} + {{45}^o}} \right) = {75^o}\)

\( \Rightarrow a = \frac{b}{{\sin B}}.\sin A = \frac{{10}}{{\sin {{60}^o}}}.\sin {75^o} \approx 11,154\)

+) \((*) \Rightarrow R = \frac{b}{{2\sin B}} = \frac{{10}}{{2\sin {{60}^o}}} = \frac{{10}}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{10\sqrt 3 }}{3}.\)

+) Diện tích tam giác ABC là: \(S = \frac{1}{2}ab.\sin {\mkern 1mu} \hat C\) \( \approx \frac{1}{2}.11,154.10.\sin {45^o}\)\( \approx 39,44\)

+) Lại có: \(R = \frac{c}{{2\sin C}}\)\( \Rightarrow c = 2.\frac{{10\sqrt 3 }}{3}.\sin {45^o} = \frac{{10\sqrt 6 }}{3} \approx 8,165\)

\( \Rightarrow p = \frac{{a + b + c}}{2} \approx \frac{{11,154 + 10 + 8,165}}{2} \approx 14,66\)

\( \Rightarrow r = \frac{S}{p} \approx \frac{{39,44}}{{14,66}} \approx 2,7\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:43

a)

Ta có: \(\widehat A = {180^o} - (\widehat B + \widehat C)\) \( \Rightarrow \widehat A = {180^o} - ({100^o} + {45^o}) = {35^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow \left\{ \begin{array}{l}AC = \sin B.\frac{{AB}}{{\sin C}}\\BC = \sin A.\frac{{AB}}{{\sin C}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}AC = \sin {100^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 139,3\\BC = \sin {35^o}.\frac{{100}}{{\sin {{45}^o}}} \approx 81,1\end{array} \right.\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.BC.AC.\sin C = \frac{1}{2}.81,1.139,3.\sin {45^o} \approx 3994,2.\)

Minh Triều
Xem chi tiết
Trần Đức Thắng
12 tháng 10 2015 lúc 20:16

Kẻ đường cao sau đó dùng ht giữa cạnh và góc là ra 

Tạ Duy Phương
12 tháng 10 2015 lúc 20:22

Kẻ đường cao AH ta có: góc BAH = góc CAH = 22 độ 30 phút.

\(BC=BH+CH=2a.\sin22^030'=a.\frac{2-\sqrt{2}}{2}\)