Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2018 lúc 3:06

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

+ Xét tính tăng giảm.

Với mọi n ∈ N ta có:

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 < un với mọi n ∈ N.

⇒ (un) là dãy số giảm.

+ Xét tính bị chặn.

un > 0 với mọi n.

⇒ (un) bị chặn dưới.

un ≤ u1 = √2 - 1 với mọi n

⇒ (un) bị chặn trên.

⇒ (un) bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 3:38

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 > un với mọi n ∈ N

⇒ (un) là dãy tăng.

+ Xét tính bị chặn:

(un) là dãy tăng

⇒ u1 = 2 < u2 < u3 < …< un ∀n ∈ N*

⇒ un ≥ 2 ∀n ∈ N*

⇒ (un) bị chặn dưới.

(un) không bị chặn trên.

⇒ un không bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2018 lúc 15:39

Ta có:  u n > 0   ∀ n ≥ 1

u n + 1 u n = n 2 + n + 1 ( n + 1 ) 2 + ( n + 1 ) + 1 = n 2 + n + 1 n 2 + 3 n + 3 < 1   ∀ n ∈ ℕ *

⇒ u n + 1 < u n   ∀ ≥ 1 ⇒  dãy ( u n )  là dãy số giảm.

Mặt khác: 0 < u n < 1 ⇒  dãy ( u n )  là dãy bị chặn.

Chọn đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 11:03

Chọn B.

Trước hết bằng quy nạp ta chứng minh: (un) 1 < un 2, n

Điều này đúng với n = 2, giả sử 1 < un < 2 ta có:  nên ta có đpcm.

.

Vậy dãy (un) là dãy giảm và bị chặn.

Khoa Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 19:57

\(u_n=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}< 1\)

=>Hàm số bị chặn trên tại \(u_n=1\)

\(n+1>=1\)

=>\(\dfrac{1}{n+1}< =1\)

=>\(-\dfrac{1}{n+1}>=-1\)

=>\(1-\dfrac{1}{n+1}>=-1+1=0\)

=>Hàm số bị chặn dưới tại 0

\(u_n=1-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)

\(\dfrac{u_n}{u_{n+1}}=\dfrac{n}{n+1}:\dfrac{n+1}{n+2}=\dfrac{n^2+2n}{n^2+2n+1}< 1\)

=>(un) là dãy số tăng

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2017 lúc 13:07

Chọn A.

Trước hết ta chứng minh 1 < un < 4

Điều này hiển nhiên đúng với n = 1.

Giả sử 1 < un < 4, ta có: 

Ta chứng minh (un) là dãy tăng

Ta có u1 < u2, giả sử un-1 < un, n ≤ k.

Khi đó: 

Vậy dãy (un)  là dãy tăng và bị chặn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2019 lúc 2:01

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 9 2017 lúc 13:06

Ta có:  u n = 2 ( n + 1 ) − 13 3 ( n + 1 ) − 2 =   2 n − 11 3 n + 1

Xét hiệu: 

u n + 1 − u n = 2 n − 11 3 n + 1 − 2 n − 13 3 n − 2 = ( 2 n − 11 ) . ( 3 n − 2 ) − ( 2 n − 13 ) . ( 3 n + 1 ) ( 3 n + 1 ) ( 3 n − 2 ) = 6 n 2 − 4 n − 33 n + ​ 22 − ( 6 n 2 + ​ 2 n − ​​ 39 n    − 13 ) ( 3 n + 1 ) . ( 3 n − 2 ) = 35 ( 3 n + 1 ) ( 3 n − 2 ) > 0

với mọi n ≥ 1 .

Suy ra u n + 1 > u n    ∀ n ≥ 1 ⇒  dãy ( u n   ) là dãy tăng.

Mặt khác:  u n = 2 3 − 35 3 ( 3 n − 2 ) ⇒ u n < 2 3    ∀ n ≥ 1

Suy ra  u n bị chặn trên

∀ n    ≥ 1    : ​   3 n − 2    ≥ 1    ⇒ 35 3 ( 3 n − 2 )    ≤ 35 3.1 =    35 3 ⇒ u n ≥ 2 3 −    35 3 =    − 11

Nên  ( u n )  bị chặn dưới.

Vậy dãy  ( u n )  là dãy bị chặn.

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 10 2018 lúc 15:47

Ta có: u n + 1 − u n = 2 n − 11 3 n + 1 − 2 n − 13 3 n − 2 = 35 ( 3 n + 1 ) ( 3 n − 2 ) > 0  với mọi  n ≥ 1

Suy ra u n + 1 > u n    ∀ n ≥ 1 ⇒  dãy ( u n )  là dãy tăng.

Mặt khác:  u n = 2 3 − 35 3 ( 3 n − 2 ) ⇒ − 11 ≤ u n < 2 3    ∀ n ≥ 1

Vậy dãy ( u n )   là dãy bị chặn.

Chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 5:00

Xét hiệu:  u n + 1 − u n = 2 n + 1 n + 4 − 2 n − 1 n + 3

= 2 n 2 + 7 n + 3 − 2 n 2 − 7 n + 4 n + 4 n + 3 = 7 n + 4 n + 3 > 0 ; ∀ n ∈ N *

Vậy: ( u n ) là dãy số tăng.

Ta có  u n = 2 n − 1 n + 3 = 2 ( n + 3 ) − 7 n + 3 = 2 − 7 n + 3

 Suy ra: ∀ n ∈ ℕ * , u n < 2  nên   ( u n )  bị chặn trên.

 Vì  ( u n ) là dãy số tăng ∀ n ∈ ℕ * , u 1 = 1 4 ≤ u n  nên  ( u n )  bị chặn dưới. Vậy  ( u n )  bị chặn.

Chọn đáp án C.