Ta có: u n = 2 ( n + 1 ) − 13 3 ( n + 1 ) − 2 = 2 n − 11 3 n + 1
Xét hiệu:
u n + 1 − u n = 2 n − 11 3 n + 1 − 2 n − 13 3 n − 2 = ( 2 n − 11 ) . ( 3 n − 2 ) − ( 2 n − 13 ) . ( 3 n + 1 ) ( 3 n + 1 ) ( 3 n − 2 ) = 6 n 2 − 4 n − 33 n + 22 − ( 6 n 2 + 2 n − 39 n − 13 ) ( 3 n + 1 ) . ( 3 n − 2 ) = 35 ( 3 n + 1 ) ( 3 n − 2 ) > 0
với mọi n ≥ 1 .
Suy ra u n + 1 > u n ∀ n ≥ 1 ⇒ dãy ( u n ) là dãy tăng.
Mặt khác: u n = 2 3 − 35 3 ( 3 n − 2 ) ⇒ u n < 2 3 ∀ n ≥ 1
Suy ra u n bị chặn trên
∀ n ≥ 1 : 3 n − 2 ≥ 1 ⇒ 35 3 ( 3 n − 2 ) ≤ 35 3.1 = 35 3 ⇒ u n ≥ 2 3 − 35 3 = − 11
Nên ( u n ) bị chặn dưới.
Vậy dãy ( u n ) là dãy bị chặn.
Chọn đáp án A.