Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Ngọc Tú
Xem chi tiết
Ngọc Khánh
18 tháng 12 2020 lúc 23:18

Giải thích các bước giải:

 BE ⊥ AM,   CF⊥AM 

=> BE // CF 

 a) Xét Δ vuông BME và Δ vuông CMF có:

BM = MC ( M là tđ BC )

B1 = C1 ( so le trong )

=> Δ ... = Δ ... ( ch - gn)

b) ME = MF ( cạnh tương ứng )

c) Xét Δ MEC và Δ MFB có:

 M1 = M2 (đối đỉnh)

ME = MF (cmt)

BM = CM (cmt)

=> Δ ... = Δ ... ( cgc )

=> CE = BF

d)

Ta có: C2 = B2 (Δ MEC = Δ MFB)

Mà 2 góc này ở vị trí so le trong 

=> CE // BF

Khách vãng lai đã xóa
Vũ Văn Hào
Xem chi tiết
ABC
Xem chi tiết
Nhân Văn
7 tháng 12 2017 lúc 11:28

A B C x M E F 1 2
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)

Trần Thị Hảo
Xem chi tiết
Đỗ Thị Huyền Trang
1 tháng 1 2018 lúc 21:56

a) xét ΔBME và ΔCMF có :

\(\widehat{BEM}\) = \(\widehat{CFM}\) ( = 90\(^O\))

BM = CM ( M là trung điểm của BC )

\(\widehat{BME}\) = \(\widehat{CMF}\) ( hai góc đối đỉnh )

\(\Rightarrow\) ΔBME = ΔCMF ( cạnh huyền - góc nhọn )

b) ΔBME = ΔCMF (cmt)

\(\Rightarrow\) BE = CF ( hai cạnh tương ứng )

Huỳnh Quang -7A
Xem chi tiết
Nguyễn Thị Chi
Xem chi tiết
soyeon_Tiểubàng giải
10 tháng 12 2016 lúc 17:18

Kí hiệu tam giác là t/g nhé

a) Có: BE _|_ Ax (gt)

CF _|_ Ax (gt)

Suy ra BE // CF (1)

Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:

BM = CM (gt)

EMB = FMC ( đối đỉnh)

Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)

=> BE = CF (2 cạnh tương ứng) (2)

ME = MF (2 cạnh tương ứng) (3)

(1); (2) và (3) là đpcm

b) Xét t/g EMC và t/g FMB có:

EM = MF (câu a)

EMC = FMB ( đối đỉnh)

CM = BM (gt)

Do đó, t/g EMC = t/g FMB (c.g.c)

=> CE = BF (2 cạnh tương ứng) (4)

ECM = FBM (2 góc tương ứng)

Mà ECM và FBM là 2 góc so le trong

Nên EC // BF (5)

(4) và (5) là đpcm

 

 

ahnjaew
Xem chi tiết
Đinh Tuấn Việt
13 tháng 12 2015 lúc 12:44

\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)

Phuong nga Nguyen
Xem chi tiết
ミŇɦư Ἧσς ηgu lý ミ
5 tháng 12 2020 lúc 14:31

a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)

# chúc bẹn học tốt !!

Khách vãng lai đã xóa
Hikari Kun
Xem chi tiết