Cho tam giác ABC, tia Ax đi qua trung điểm M của cạnh BC. Kẻ BE,CF vuông góc với Ax (E,F \(\in\)Ax)
a) \(\Delta\)BME= \(\Delta\)CMF b)ME=MF c) CE= BF
d) CE // BE e)BE // CF
cho tam giác abc , tia ax đi qua trung điểm M của cạnh bc . kẻ be,cf vuông góc với ax ( e, f thuộc ax) . cmr :
A)tam giác bme=tam giác cmf
B)ME=MF
C)CE=BF
D)CE//BF;BE//CF
Giải thích các bước giải:
BE ⊥ AM, CF⊥AM
=> BE // CF
a) Xét Δ vuông BME và Δ vuông CMF có:
BM = MC ( M là tđ BC )
B1 = C1 ( so le trong )
=> Δ ... = Δ ... ( ch - gn)
b) ME = MF ( cạnh tương ứng )
c) Xét Δ MEC và Δ MFB có:
M1 = M2 (đối đỉnh)
ME = MF (cmt)
BM = CM (cmt)
=> Δ ... = Δ ... ( cgc )
=> CE = BF
d)
Ta có: C2 = B2 (Δ MEC = Δ MFB)
Mà 2 góc này ở vị trí so le trong
=> CE // BF
Cho tam giác ABC, tia Ax đi qua trung điểm M của cạnh BC. Kẻ BE, CF vuông góc với Ax ( E,F thuộc Ax ). Chứng minh rằng:
a, Tam giác BME = tam giắc CMF
b, ME = MF
c, CE = BF
d, CE // BF
e, BE // CF
Giải chi tiết hộ mình nhá các bạn !!!
Cho tam giác ABC , tia Ax đi qua trung điểm M của cạnh Bc . Kẻ BE,CF vuông góc với Ax(E,F∈Ax).CMR:
a)tam giác BME=tam giác CMF
b)BE=CF
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
Cho tam giác ABC, tia Ax đi qua trung điểm M của cạnh BC. Kẻ BE, CF vuông góc với Ax (E,F thuộc Ax). Chứng minh rằng:
a) tam giác BME = tam giác CMF b) BE=CF
a) xét ΔBME và ΔCMF có :
\(\widehat{BEM}\) = \(\widehat{CFM}\) ( = 90\(^O\))
BM = CM ( M là trung điểm của BC )
\(\widehat{BME}\) = \(\widehat{CMF}\) ( hai góc đối đỉnh )
\(\Rightarrow\) ΔBME = ΔCMF ( cạnh huyền - góc nhọn )
b) ΔBME = ΔCMF (cmt)
\(\Rightarrow\) BE = CF ( hai cạnh tương ứng )
ChoABC có AB < AC. Vẽ tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E và F Ax)
a) Chứng minh BME = CMF b) So sánh BF và CE
Cho tam giác ABC ( AB \(\ne\) AC ), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax ( E \(\in\) Ax, F \(\in\) Ax ). Chứng minh:
a) BE // CF, BE = CF và ME = MF;
b) CE // BF và CE = BF.
Kí hiệu tam giác là t/g nhé
a) Có: BE _|_ Ax (gt)
CF _|_ Ax (gt)
Suy ra BE // CF (1)
Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:
BM = CM (gt)
EMB = FMC ( đối đỉnh)
Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)
=> BE = CF (2 cạnh tương ứng) (2)
ME = MF (2 cạnh tương ứng) (3)
(1); (2) và (3) là đpcm
b) Xét t/g EMC và t/g FMB có:
EM = MF (câu a)
EMC = FMB ( đối đỉnh)
CM = BM (gt)
Do đó, t/g EMC = t/g FMB (c.g.c)
=> CE = BF (2 cạnh tương ứng) (4)
ECM = FBM (2 góc tương ứng)
Mà ECM và FBM là 2 góc so le trong
Nên EC // BF (5)
(4) và (5) là đpcm
Cho tam giác ABC. Từ A kẻ tia Ax đi qua trung điểm M của cạnh BC, kẻ BE và CF vuông góc với Ax (E€Ax, F€Ax). Chứng minh BE=CF.(vẽ hình nhak)
\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)
cho tam giác abc vẽ tia ax đi qua trung điểm m của bc kẻ be và cf vuông góc với ax
a) chứng minh be// cf
b) chứng minh me = mf
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
# chúc bẹn học tốt !!
Cho tam giác ABC (AB ≠ AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax, F thuộc Ax).
a) So sánh độ dài BE và CF;
b) Chứng minh rằng EC // BF.