a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
Cho ABC (AB<AC). Gọi M là trung điểm của BC, Tia Ax đi qua M. Kẻ BE vuông góc với Ax tại E, CF vuông góc với Ax tại F. Chứng minh rằng:
a) BE//CF.
b) BEM = CFM
c) BE = CF.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác ABC vuông tại A, BE là đường trung tuyến (E thuộc AC) Trên tia đối của tia EB lấy điểm F sao cho EF=EB. Chứng minh rằng a)tam giác ABE= tam giác CFE b)BC>CF c) Góc EBA>góc CBE
Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy D sao cho MA = MD
a,Chứng minh tam giác ABM = tam giác DCM
b, Chứng minh AB//DC
c, Kẻ BE vuông AM (E thuộc AM), CF vuông DM ( F thuộc DM). Chứng minh M là trung điểm EF
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại
D. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: ABD = EBD. b) Chứng minh: BD AE
c) Gọi F là giao điểm của BA và ED. Chứng minh: AF = CE.
d) Gọi I là trung điểm của CF. Chứng minh ba điểm B, D, I thẳng hàng.
Giúp mình với ạ nhanh nha , có vẽ hình minh họa nhé
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng
Cho tam giác ABC vuông tại A, có AB= 9cm, BC= 15cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối cua tia AB lấy điểm D sao cho AB=AD. CMR : BC=DC c) Gọi E,F lần lượt là trung điểm cạnh CD,BC; gọi I là giao điểm của BE và AC. Chứng minh D,I,F thẳng hàng.