Cho hàm số: y = –( m 2 + 5m) x 3 + 6m x 2 + 6x – 5
a) Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?
b) Với giá trị nào của m thì hàm số đạt cực đại tại x = 1 ?
Cho hàm số: y = –( m 2 + 5m) x 3 + 6m x 2 + 6x – 5. Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?
y = –( m 2 + 5m) x 3 + 6m x 2 + 6x – 5
y′ = –3( m 2 + 5m) x 2 + 12mx + 6
Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.
Ta xét các trường hợp:
+) m 2 + 5m = 0 ⇔
– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.
– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .
+) Với m 2 + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu
∆ ' = 36 m 2 + 18( m 2 + 5m) ≤ 0 ⇔ 3 m 2 + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0
– Với điều kiện đó, ta có –3( m 2 + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.
Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞ .
A. m < 14 5 .
B. m < - 3 .
C. m < 3 .
D. m < - 14 5
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞
A. m < 14 5
B. m < - 14 5
C. m < 3
D. m < - 3
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞
A. m < 14 5
B. m < - 14 5
C. m < 3
D. m < - 3
Cho hàm số y = m x 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ ( 1 ; + ∞ ) .
A. m < 14 5
B. m < 3
C. m < - 14 5
D. m < -3
Cho hàm số: y = 2x + 3 (1)
1. Vẽ đồ thị hàm số (1) 2. Xác định m để đường thẳng (d): y = (2m – 1)x – 5m song song với đồ thị của hàm số (1). 3. Xác định m để đồ thị hàm số (1) và đường thẳng (d) cắt nhau tại một giao điểm có hoành độ dương.2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
Cho hàm số y = (2m - 3)x + m - 5
a) Vẽ đồ thị hàm số với m = 2
b) Chứng minh họ đường thắng luôn đi qua điểm có định khi m thay đổi
c) Xác định m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
d) Xác định m đễ đồ thị hàm số tạo với trục hoành một góc 300
Xác định m để đồ thị hàm số tạo với trục hoành một góc 135°
f) Xác định m để đồ thị hàm số cắt đường thắng y = 3x - 4 tại một điểm trên Oy
g)Xác định m để đồ thị hàm số cắt đường thắng y=-x-3 tại một điểm trên Ox
cho hàm số y = (m-1)x + m - 5
a) xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
b) xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -1
c) xác định m để đồ thị hàm số đi qua gốc tọa độ
a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:
\(0\cdot\left(m-1\right)+m-5=3\)
=>m-5=3
=>m=8
b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:
\(-\left(m-1\right)+m-5=0\)
=>-m+1+m-5=0
=>-4=0(vô lý)
c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:
\(0\left(m-1\right)+m-5=0\)
=>m-5=0
=>m=5
Cho hàm số :
\(y=-\left(m^2+5m\right)x^3+6mx^2+6x-5\)
a) Xác định m để hàm số đơn điệu trên \(\mathbb{R}\). Khi đó hàm số đồng biến hay nghịch biến ? Tại sao ?
b) Với giá trị nào của m thì hàm số đạt cực đại tại \(x=1\) ?