Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 6 2021 lúc 8:10

a)Đk:\(sinx\ne1\)

Pt\(\Leftrightarrow sin^2x+sinx=-2\left(sinx-1\right)\)

\(\Leftrightarrow sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{-3+\sqrt{17}}{2}\left(tm\right)\\sinx=\dfrac{-3-\sqrt{17}}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\\x=\pi-arc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\end{matrix}\right.\)(\(k\in Z\))

b)Đk:\(sinx\ne1\)

Pt \(\Leftrightarrow\dfrac{1-2sin^2x+sinx}{sinx-1}+1=0\)

\(\Leftrightarrow\dfrac{-\left(sinx-1\right)\left(2sinx+1\right)}{sinx-1}+1=0\)

\(\Leftrightarrow-\left(2sinx+1\right)+1=0\)

\(\Leftrightarrow sinx=0\) (tm)

\(\Leftrightarrow x=k\pi,k\in Z\)

Vậy...

Nhi Hoàng
Xem chi tiết
meme
19 tháng 8 2023 lúc 16:25

Để giải phương trình cos(2x) - sin(x) = 0, ta có thể sử dụng các công thức lượng giác để đưa phương trình về dạng phù hợp.

Bước 1: Sử dụng công thức cos(2x) = 2cos^2(x) - 1, phương trình trở thành 2cos^2(x) - 1 - sin(x) = 0.

Bước 2: Sử dụng công thức sin^2(x) + cos^2(x) = 1, ta có thể thay thế cos^2(x) bằng 1 - sin^2(x), phương trình trở thành 2(1 - sin^2(x)) - 1 - sin(x) = 0.

Bước 3: Giải phương trình 2 - 2sin^2(x) - 1 - sin(x) = 0.

Bước 4: Đặt sin(x) = t, phương trình trở thành 2 - 2t^2 - 1 - t = 0.

Bước 5: Rút gọn phương trình, ta có -2t^2 - t + 1 = 0.

Bước 6: Giải phương trình bậc hai trên, ta có thể sử dụng công thức hoặc phân tích thành nhân tử để tìm giá trị của t.

Bước 7: Giải phương trình -2t^2 - t + 1 = 0, ta tìm được hai giá trị t = -1 và t = 1/2.

Bước 8: Đặt sin(x) = -1 và sin(x) = 1/2, ta tìm được hai giá trị x = -π/2 và x = π/6.

Vậy, phương trình cos(2x) - sin(x) = 0 có hai nghiệm là x = -π/2 và x = π/6.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:50

ĐKXĐ: 1-sin x<>0

=>sin x<>1

=>x<>pi/2+k2pi

cos2x/1-sinx=0

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/2+kpi/2

Kết hợp ĐKXĐ, ta được: \(x\in\left\{pi+k2pi;\dfrac{3}{2}pi+k2pi;2pi+k2pi\right\}\)

Lương Thế liêm
Xem chi tiết
Khánh Russew
3 tháng 8 2019 lúc 9:49

cos2x = 1- sin^x 
sin2x= 2sinxcosx 

Nhóm lại bình thường và giải thôi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2019 lúc 2:54

Chọn A

abc
Xem chi tiết
Hồng Phúc
15 tháng 8 2021 lúc 21:17

ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)

\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)

\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)

\(\Leftrightarrow2cos^22x-2cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)

liluli
Xem chi tiết
Mai Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 7 2019 lúc 16:35

Đ á p   á n   B P T   đ ã   c h o   t ư ơ n g   đ ư ơ n g : 4 .   cos 2 2 x   +   8   sin 2 x   -   7   =   0 ⇔ 4 . 1 - sin 2 2 x   +   8 . sin   2 x   -   7   =   0 ⇔ - 4 . sin 2 2 x   +   8 . sin 2 x   -   3   =   0 ⇔ sin   2 x   =   1 2   ⇔   x   =   π 12   +   k π   ( k ∈ ℤ ) hoặc   x   =   5 π 12   +   kπ   ( k ∈ ℤ )

Givemesome Flan
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2022 lúc 18:43

\(cos2x+cosx+1=sin2x+sinx\)

\(\Leftrightarrow cos^2x-sin^2x+cosx+cos^2x+sin^2x=2sinx.cosx+sinx\)

\(\Leftrightarrow2cos^2x+cosx=2sinx.cosx+sinx\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=sinx\left(2cosx+1\right)\)

\(\Leftrightarrow\left(2cosx+1\right)\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sinx=cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{4}+k\pi\\\end{matrix}\right.\)