Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nanpham
Xem chi tiết
Akai Haruma
28 tháng 4 2022 lúc 0:27

Lời giải:
$f'(x)=5(\sin ^23x-4)'(\sin ^23x-4)^4=5.2.\sin 3x (\sin 3x)'.(\sin ^23x-4)^4$

$=30\sin 3x\cos 3x(\sin ^23x-4)^4$

$\Rightarrow k=30$

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:16

a: \(y=f\left(x^2\right)=sin\left(x^2\right)\)

b: \(y=f\left(g\left(x\right)\right)=f\left(x^2\right)=sinx^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2018 lúc 14:11

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2019 lúc 15:36

Chọn B

Đặt 

Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].

Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.

Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.

Võ Thị Hoài Linh
Xem chi tiết
Huỳnh Thị Đông Thi
20 tháng 3 2016 lúc 21:31

Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó. 

Để xác định hằng số C ta sử dụng điều kiện F(0)=1

Từ điều kiện này và biểu thức F(x) ta có :

\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)

Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm

Quân Trương
Xem chi tiết
Nguyễn Kim Ngân
13 tháng 1 2021 lúc 22:16

f(x)=4sin2x.cos2x.sinx=4(1-cos2x)cos2x.sinx=(4cos4x-4cos2x)(-sinx)

Đặt u=cosx ---> F(x)=(4/5)cos5x-(4/3)cos3x+C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 8:13

Chọn A.

F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2018 lúc 16:33

Đáp án C.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:18

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).