Tính giá trị của sin 30 0 30 '
A. 0,5074
B. 0,5075
C. 0,5076
D. 0,5077
Tính giá trị của các biểu thức sau:
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
c) \(P = 1 + {\tan ^2}{60^o}\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)
Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)
Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)
c) \(P = 1 + {\tan ^2}{60^o}\)
Ta có: \(\tan {60^o} = \sqrt 3 \)
Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)
Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)
Tính giá trị của các bt sau(ko dùng máy tính) b/ B = 3cos 10 ° - 4cos^3 (10 °) . c/C = sin 30 ° * (2 - 4cos^2 15 °) d / D = 4sin^3 (40 °) + 3cos 130 °
b: \(=-cos\left(3\cdot10\right)=-cos30=-\dfrac{\sqrt{3}}{2}\)
c: \(=\dfrac{1}{2}\cdot\left(2-4\cdot\dfrac{2+\sqrt{3}}{4}\right)\)
=-căn 3/2
Tính giá trị của biểu thức
a) A = 2sin 30 độ + 3 cos 45 độ - sin 60 độ
b) B = 3 cos 30 độ + 3 sin 45 độ - cos 60 độ
a) \(A=2sin30^o+3cos45^o-sin60^0\)
\(\Leftrightarrow A=2.\dfrac{1}{2}+3.\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)
\(\Leftrightarrow A=1+\dfrac{3\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)
\(\Leftrightarrow A=1+\dfrac{\sqrt[]{3}\left(\sqrt[]{6}-1\right)}{2}\)
b) \(B=3cos30^o+3sin45^o-cos45^o\)
\(\Leftrightarrow B=3\dfrac{\sqrt[]{3}}{2}+3\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{2}}{2}\)
\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\dfrac{2\sqrt[]{2}}{2}\)
\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\sqrt[]{2}\)
Biết \(90^0< a< 180^o\); \(0^o< b< 90^o\) và \(cos\left(a-\dfrac{b}{2}\right)=-\dfrac{1}{4}\); \(sin\left(\dfrac{a}{2}-b\right)=\dfrac{1}{3}\). Giá trị biểu thức \(P=72cos\left(a+b\right)+49\) bằng
A. \(P=4\sqrt{30}\)
B. \(P=2\sqrt{30}\)
C. \(P=-4\sqrt{30}\)
D. \(P=-2\sqrt{30}\)
Lời giải:
Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$
$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$
$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$
\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)
\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)
Đáp án C.
Cho biết \(\sin {30^o} = \frac{1}{2};\sin {60^o} = \frac{{\sqrt 3 }}{2};\tan {45^o} = 1.\) Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của \(E = 2\cos {30^o} + \sin {150^o} + \tan {135^o}.\)
Ta có:
\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} = - \tan \left( {{{180}^o} - {{135}^o}} \right) = - \tan {45^o} = - 1\end{array}\)
\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3 - \frac{1}{2}.\)
Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \(\left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
b) \({\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
c) \(\cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
a)
Đặt \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
Ta có: \(\left\{ \begin{array}{l}\cos {135^o} = - \cos {45^o};\cos {180^o} = - \cos {0^o}\\\tan {150^o} = - \tan {30^o}\end{array} \right.\)
\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow A = - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A = - \frac{{2 - \sqrt 2 + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A = - \frac{{\left( {2 - \sqrt 2 + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A = - \frac{{6 + 2\sqrt 3 - 3\sqrt 2 - \sqrt 6 + 6\sqrt 3 + 6}}{6}\\ \Leftrightarrow A = - \frac{{12 + 8\sqrt 3 - 3\sqrt 2 - \sqrt 6 }}{6}.\end{array}\)
b)
Đặt \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
Ta có: \(\left\{ \begin{array}{l}\cos {120^o} = - \cos {60^o}\\\cot {135^o} = - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)
\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)
\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)
\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)
c
Đặt \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)
\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)
Tính giá trị của biểu thức:
a) a sin 0 độ + b cos 0 độ + c sin 90 độ
b) a cos 90 độ + b sin 90 độ + c sin 180 độ
c) \(a^2sin90\) độ + b bình cos 90 độ + c bình cos 180 độ
a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)
\(=a\cdot0+b\cdot1+c\cdot1\)
=b+c
b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)
\(=a\cdot0+b\cdot1+c\cdot0\)
=b
c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)
\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)
\(=a^2-c^2\)
Tính giá trị của biểu thức:
a) 87 + 92 – 32 = .................
= .................
b) 138 – 30 – 8 = .................
= .................
c) 30 x 2 : 3 = .................
= .................
d) 80 : 2 x 4 = .................
= .................
a) 87 + 92 – 32 = 179 – 32
= 147
b) 138 – 30 – 8 = 108 - 8
= 100
c) 30 x 2 : 3 = 60 : 3
= 20
d) 80 : 2 x 4 = 40 x 4
= 160
Tính giá trị của các biểu thức:
a) 417 – (37 – 20) = ..................
= ..................
b) 826 – (70 + 30) = ..................
= ..................
c) 148 : (4 : 2) = ..................
= ..................
d) ( 30 + 20) x 5 = ..................
= ..................
a) 417 – (37 – 20) = 417 – 17
= 400
b) 826 – (70 + 30) = 826 – 100
= 726
c) 148 : (4 : 2) = 148 : 2
= 4
d) ( 30 + 20) x 5 = 50 x 5
= 250
Tính giá trị của biểu thức:
a) 90 – ( 30 – 20) = ..........................
= ..........................
90 – 30 – 20 = ..........................
= ..........................
b) 100 – (60 + 10) = ..........................
= ..........................
100 - 60 + 10 = ..........................
= ..........................
c) 135 – (30 + 5) = ..........................
= ..........................
135 – 30 – 5 = ..........................
= ..........................
d) 70 + (40 – 10) = ..........................
= ..........................
70 + 40 – 10 = ..........................
= ..........................
a) 90 – ( 30 – 20) = 90 – 10
= 80
90 – 30 – 20 = 60 - 20
= 40
b) 100 – (60 + 10) = 100 – 70
= 30
100 - 60 + 10 = 40 + 10
= 50
c) 135 – (30 + 5) = 135 – 35
= 100
135 – 30 – 5 = 105 – 5
= 100
d) 70 + (40 – 10) = 70 + 30
= 100
70 + 40 – 10 = 110 -10
= 100
nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu