Tính tổng các giá trị của tham số m để đồ thị hàm số: y= - x 4 + 2 m x 2 - 4 m + 1 có ba điểm cực trị . Đồng thời ba điểm cực trị đó cùng với gốc tọa độ tạo thành 1 hình thoi.
A. Không tồn tại m.
B. 2
C. 1/4
D. 9/4
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số f ( x ) = x 3 - 3 x 2 . Tính tổng tất cả các giá trị nguyên của tham số m để đồ thị của hàm số g ( x ) = f ( | x | ) + m cắt trục hoành tại 4 điểm phân biệt.
A. 3.
B. 10.
C. 4.
D. 6.
cho hàm số bậc nhất y=(m-2)x+m+1 ( với m là tham số m khác 2 ) a) tìm các giá trị của m để đồ thi hàm số đã cho đi qua A(1;-1) b) tìm các giá trị của m đẻ đồ thị của m để đồ thị hàm số đã cắt cho đường thẳng y=x+2 tại 1 điểm trên trục hoành
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
Tìm các giá trị của tham số m để đồ thị hàm số y =mx^4 +(2m-1)x^2 +m -2 chỉ có 1 cực đại và ko có cực tiểu.
- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)
- Với \(m\ne0\) hàm chỉ có cực đại khi:
\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)
Vậy \(m\le0\)
Có bao nhiêu giá trị nguyẻn của tham số m để đồ thị hàm số y= -x^4+2(2+m)x^2-4-m không có điểm chung với trục hoành ????
Lời giải:
Đồ thị hàm số \(y=-x^4+2(m+2)x^2-(4+m)\) không có điểm chung với trục hoành nghĩa là phương trình \(x^4-2(m+2)x^2+(m+4)= 0\) vô nghiệm
Đặt \(x^2=t\). Khi đó ta cần tìm $m$ nguyên sao cho \(t^2-2(m+2)t+(m+4)=0(1)\) vô nghiệm
Sẽ có hai kiểu xảy ra:
Kiểu 1: \((1)\) có \(\Delta'=(m+2)^2-(m+4)=m^2+3m<0\Leftrightarrow -3< m<0\)
Vì \(m\in\mathbb{Z}\Rightarrow m\in \left \{ -1,-2 \right \}\)
Kiểu 2: \((1)\) có nghiệm nhưng hai nghiệm đó là hai nghiệm âm( Kết hợp với \(t\geq 0\) sẽ suy ra mâu thuẫn, phương trình vô nghiệm)
Trước tiên \(\Delta'=m^2+3m\geq 0\Rightarrow \) \(\left[\begin{matrix}m\ge0\\m\le-3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{\begin{matrix} t_1+t_2=2(m+2)<0 \\ t_1t_2=m+4> 0\end{matrix}\right.\Rightarrow -4< m<-2\Rightarrow m=-3\)
Vậy \(m\in \left \{-1,-2,-3\right\}\)
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
Tính tổng tất cả các giá trị thực của tham số m để hàm số y= x3-3mx2+ 3( m2-1) x- m3+ m có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O.
A. -4
B. -5
C. -6.
D. -7
Ta có y’ = 3x2- 6mx + 3( m2-1).
Hàm số đã cho có cực trị thì phương trình y’ =0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m
Khi đó, điểm cực đại A( m-1; 2-2m) và điểm cực tiểu B( m+1; -2-2m)
Ta có
Tổng hai giá trị này là -6.
Chọn C.
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x + 1 m 2 x 2 - m + 1 có đúng 4 đường tiệm cận?
A. m > 1
B. m < 1 m ≢ 0
C. m < 1
D. m < 0
Cho hàm số y=(m+1)x
a) Tìm các giá trị của tham số m để tham số nhận giá trị bằng -5 tại x=5 ,
b) Với giá trị nào của m thì đồ thị hàm số đi qua điểm A(2;3)?
c)Tìm giá trị của m để điểm B(0;4) thuộc đồ thị hàm số.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x + 1 m x − 1 2 + 4 có hai tiệm cận đứng
A. m < 1
B. m < 0 m ≠ − 1
C. m = 0
D. m < 0