Tìm a để hai đa thức f ( x ) = 2 x - 2 v à g ( x ) = a x 2 - x có cùng nghiệm
A. a = -2
B. a = -1
C. a = 2
D. a = 1
Cho 2 đa thức f(x)=\(x^4-9x^3+21x^2+x+a\) và g(x)=\(x^2-x-2\)
a)Cho a =-100,tìm dư của phép chia đa thức f(x) và g(x)
b)Tìm a để f(x) chia hết cho g(x)
Giải chi tiết hộ mình nhé thanks
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
a, Cho hai đa thức: f(x)= (x-1)(x+3) và g(x)= x^3-ax2+bx-3
Xác định a, b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
b, Cho biểu thức 2011-x
11-x
Tìm giá trị nguyên của x để A đạt giá trị lớn nhất
cho đa thức f(x)=2x^3-3ax^2+2x+b và đa thức g(x)=(x-2)(x-3) . tìm a và b để f(x) chia hết cho g(x)
Cho hai đa thức sau: f(x) = (x – 1)(x + 2) và g(x) = x3 + ax2 + bx + 2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
+) Để f (x) có nghiệm thì : f (x) = 0
=> \(\left(x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)
\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)
+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)
=> 2a \(-\) b = 3 \(\left(2\right)\)
+) Thay \(\left(1\right)vào\left(2\right)\) ta được :
\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)
Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)
Vậy a = 0 ; b = \(-\)3
Cho đa thức f(x)=2x+b
a, Tìm b để f(x) nhận x=-2 là nghiệm
b, Tìm a để f(x) có nghiệm gấp đôi nghiệm của đa thức g(x)=2x+1
\(f\left(-2\right)=0\)
\(=>2.\left(-2\right)+b=0\)
\(=>-4+b=0 =>b=4\)
a) Cho đa thức M(x) = ax + b
Xác định a,b biết M(1) = 3; M(-2) = 2
b) Cho hai đa thức G(x) = (a + 1)x2 - 3 và F(x) = 5x + 7a (a là hằng số)
Tìm a để G(-1) = F(2)
GIÚP MÌNH VỚII !! CẢM ƠN BẠN NHIỀU LẮM:33
a: M(1)=3
M(-2)=2
=>a+b=3 và -2a+b=2
=>a=1/3 và b=8/3
b: G(-1)=F(2)
=>(a+1)*(-1)^2-3=5*2+7a
=>a+1-3-10-7a=0
=>-6a-12=0
=>a=-2
Cho đa thức f(x) = 2x^3 - 3ax^2 + 2x + b và đa thức g(x) = (x - 2)(x - 3). Tìm a và b để f(x) chia hết cho g(x)
Cho g( x ) = 0
\(\Leftrightarrow\)( x - 2 )( x - 3 ) = 0
\(\Leftrightarrow\)x = 2 hoặc x = 3
f( 2 ) = 2 . 23 - 3 . a . 22 + 2 . 2 + b = 20 - 12a + b ( 1 )
f( 3 ) = 2 . 33 - 3 . a . 32 + 2 . 3 + b = 48 - 27a + b ( 2 )
Lấy ( 1 ) và ( 2 ) ta có :
- 28 + 15a = 0
\(\Rightarrow\)15a = 28
\(\Rightarrow\)a = 28 / 15
\(\Rightarrow\)b = 12 / 5
Cho 2 đa thức: f(x)=x^2+2mx+m^2-2 và g(x)=m^2.x^2+2(m-1)x+5
a) Tìm m để f(-1)=f(1).
b) Với giá trị m tìm được ở câu a, tìm đa thức h(x)=2f(x)-g(x).
c) Với đa thức h(x) ở câu b, tìm nghiệm của đa thức h(x)+3x^2-9.
Cho đa thức:
f(x) = 2x2 - 3x - (5x2 + 4x) + 4x.(x + 1) + 1
g(x) = ax2 + bx - 2
a, Thu gọn đa thức f(x).
b, Tìm a và b biết g(x) = 0 tại x= -1; x=2.
c, Với a và b tìm được đối với đa thức g(x), ta thực hiện:
_ Chứng minh g(x) = (x-2).(x+1)
_ Tìm nghiệm của h(x) = f(x) - g(x)
_ Tìm a để f(a) = g(a).
Help me!!!
\(a.\)Ta có:
\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)
\(=2x^2-3x-5x^2-4x+4x^2+4x+1\)
\(=x^2-3x+1\)
\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:
\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)
\(\Leftrightarrow a.1+\left(-b\right)=0+2\)
\(\Leftrightarrow a-b=2\) \(\left(1\right)\)
Tại: \(x=2\)thì \(g\left(2\right)=0\)nên:
\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)
\(\Leftrightarrow4a+2b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)
Lỡ nhấn nút gửi, làm tiếp nhé:
\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)
Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)
\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)
Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)
Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)
\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)
Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)
Chắc vậy !!!