Ôn tập chương Biểu thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khanhhuyen6a5

Cho hai đa thức sau: f(x) = (x – 1)(x + 2) và g(x) = x3 + ax2 + bx + 2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).

Giang Thủy Tiên
6 tháng 5 2018 lúc 12:23

+) Để f (x) có nghiệm thì : f (x) = 0

=> \(\left(x-1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)

\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)

+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)

=> 2a \(-\) b = 3 \(\left(2\right)\)

+) Thay \(\left(1\right)vào\left(2\right)\) ta được :

\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)

Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)

Vậy a = 0 ; b = \(-\)3


Các câu hỏi tương tự
Bế Đức
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
Vũ Hồng Ngọc
Xem chi tiết
Huy Phan Đình
Xem chi tiết
Gia hân
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
Rosenaly
Xem chi tiết
:3 Coconut
Xem chi tiết
Đặng Thanh Xuân
Xem chi tiết