Phần trắc nghiệm
Nội dung câu hỏi 1:
Hàm số nào sau đây là hàm số bậc nhất ?
A.y = -2x + 4
B.y = 5/x + 4
C.y = x
D.y = x 2 - 1
đồ thị hàm số y=-2x+1 song song với đồ thị hàm số nào sau đây? A.y=-x+2 B.y=x-2 C.y=2x+1 D.y=-2x+5
hàm số nào sau đây là hàm số bậc 2? A. y=2x+1 B.y=3x-4 C.y=x^2-1 D.y=1/x^2-2x-1
Hàm số nào dưới đây đồng biến trên R? A.x+1/x-2 B.y=x^2+2x C.y=x^3-x^2+x D.y=x^4-3x^2+2
Xét hàm số \(y=x^3-x^2+x\). Ta có \(y'=3x^2-2x+1=\left(x-1\right)^2+2x^2>0\) nên hàm số đồng biến trên R. Chọn C
Trong các hàm số sau đây hàm số nào là hàm số chẵn
A.y=2x\(^3\)-3x
B.y=x\(^2\)-2x
C.y=\(\sqrt{x^2+1}\)
D.y=2x\(^4\)-3x\(^2\)+x
\(f\left(-x\right)=2\left(-x\right)^3+3x=-\left(2x^3-3x\right)=-f\left(x\right)\left(loại\right)\\ f\left(-x\right)=\left(-x\right)^2+2x=x^2+2x\ne f\left(x\right)\left(loại\right)\\ f\left(-x\right)=\sqrt{\left(-x\right)^2+1}=\sqrt{x^2+1}=f\left(x\right)\left(nhận\right)\\ f\left(-x\right)=2\left(-x\right)^4-3\left(-x\right)^2-x=2x^4-3x^2-x\ne f\left(x\right)\left(loại\right)\)
Chọn C
Xét sự biến thiên của hàm số
\(a.y=-2x^2+x+1\\ b.y=\sqrt{2-x}\\ c.y=\sqrt{2x-x^2}\)
a. Với $x_1, x_2\in\mathbb{R}$ thỏa $x_1\neq x_2$ thì:
\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{-2(x_1^2-x_2^2)+(x_1-x_2)}{x_1-x_2}=1-2(x_1+x_2)\)
Với $x_1,x_2> \frac{1}{4}$ thì $A< 0$ nên hàm số nghịch biến trên $(\frac{1}{4}; +\infty)$
Với $x_1,x_2< \frac{1}{4}$ thì $A>0$ nên hàm số đồng biến trên $(-\infty; \frac{1}{4})$
b. TXĐ: $D=(-\infty; 2]$
\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2-x_1}-\sqrt{2-x_2}}{x_1-x_2}=\frac{-1}{\sqrt{2-x_1}+\sqrt{2-x_2}}< 0\)
Vậy hàm số nghịch biến trên tập xác định $(-\infty;2]$
c. TXĐ: $D=[0;2]$
\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2x_1-x_1^2}-\sqrt{2x_2-x_2^2}}{x_1-x_2}=\frac{2-(x_1+x_2)}{\sqrt{2x_1-x_1^2}+\sqrt{2x_2-x_2^2}}\)
Nếu $x_1,x_2\in (1;2)$ thì $A<0$ nên hàm số nghịch biến trên $(1;2)$
Nếu $x_1,x_2\in (0;1)$ thì $A>0$ nên hàm số nghịch biến trên $(0;1)$
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6
C3: Giả sử các biểu thức đều có nghĩa. Với giá trị nào của a thì hai phân thức x/x+1 và ax^2-ax/x^2-1 bằng nhau:
A. -1 B. 1 C. 2 D.3
C5: Hàm số nào sau đây là hàm số bậc nhất
A. y=2x-1 B.y=2 C.y=x^2+x+1 D. y=2/x
C6: Đồ thị hàm số y=x+2 đi qua điểm có tọa độ nào sau đây
A. (0;-2) B.(1;3) C.(-1;0) D.(0;0)
C8: Giá trị m để đường thẳng y=(m-1)x+3 với ( m khác 1) song song với đường thẳng y=x là ?
A. m=0 B. m=1 C. m=2 D.không có giá trị của m
C9: Tổng số cạnh bên và cạnh đáy của hình chóp tam giác đều là
A.4 B.6 C.8 D.10
C10 S xung quanh hình chóp đều =?
A,tích nửa chu vi đáy và đường cao của hình chóp
B. Tích nửa chu vi đáy và độ dài trung đoạn
C. Tích chu vi đáy và độ dài trung đoạn
D. Tổng chu vi đáy và trung đoạn
C11 : Tứ giác ABCD có C=50 độ ; D=60 độ; A:B=3:2. Số đo B bằng?
A 50 độ B.100 độ C.150 độ D.200 độ
C12 :phát biểu nào sau đây là sai?
A. tứ giác có 4 cạnh =nhau và 4 góc = nhau là hình vuông
B. tứ giác có 2 dường chéo bằng nhau là hình bình hành
C. tứ giác có 4 cạnh bằng nhau là hình thoi
D. Tứ giác có 4 góc = nhau là hình chữ nhật
Câu 3: B
Câu 5: A
Câu 6: B
Câu 8: C
Câu 9: B
Câu 10:B
Câu 11: B
Câu 12: B
Phần trắc nghiệm
Nội dung câu hỏi 1
Chọn câu có khẳng định đúng.
Sự phụ thuộc nào giữa các đại lượng y và x cho sau đây là hàm số bậc nhất?
A. y là chu vi hình vuông và x là độ dài cạnh hình vuông đó.
B. y là chu vi của tam giác vuông có một canh góc vuông bằng 3cm và x là cạnh góc vuông còn lại.
C. y là diện tích của hình vuông và x là độ dài cạnh của hình vuông đó
D. y là diện tích của một tam giác vuông có một cạnh góc vuông là 5 cm và x là cạnh huyền của tam giác đó.
Tìm Tập xác định của các hàm số sau:
\(a.y=\dfrac{x-2}{\left|x\right|+4}+\sqrt{x-x^2}\\ b.y=\dfrac{\left|x\right|}{\left|x-3\right|+\left|x+3\right|}\\ c.y=\dfrac{x+1}{\left|x\right|-1}+\sqrt{x^2-\left|x\right|}\)
\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
TXĐ : \(D=\left[0;1\right]\)
b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)
Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)
Nên hàm số xác định với mọi x
Tập xác định \(D=R\)
c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)
TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)