Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Truong Dung

Xét sự biến thiên của hàm số

\(a.y=-2x^2+x+1\\ b.y=\sqrt{2-x}\\ c.y=\sqrt{2x-x^2}\)

Akai Haruma
12 tháng 7 2021 lúc 23:43

a. Với $x_1, x_2\in\mathbb{R}$ thỏa $x_1\neq x_2$ thì:

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{-2(x_1^2-x_2^2)+(x_1-x_2)}{x_1-x_2}=1-2(x_1+x_2)\)

Với $x_1,x_2> \frac{1}{4}$ thì $A< 0$ nên hàm số nghịch biến trên $(\frac{1}{4}; +\infty)$

Với $x_1,x_2< \frac{1}{4}$ thì $A>0$ nên hàm số đồng biến trên $(-\infty; \frac{1}{4})$

 

Akai Haruma
12 tháng 7 2021 lúc 23:50

b. TXĐ: $D=(-\infty; 2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2-x_1}-\sqrt{2-x_2}}{x_1-x_2}=\frac{-1}{\sqrt{2-x_1}+\sqrt{2-x_2}}< 0\)

Vậy hàm số nghịch biến trên tập xác định $(-\infty;2]$

c. TXĐ: $D=[0;2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2x_1-x_1^2}-\sqrt{2x_2-x_2^2}}{x_1-x_2}=\frac{2-(x_1+x_2)}{\sqrt{2x_1-x_1^2}+\sqrt{2x_2-x_2^2}}\)

Nếu $x_1,x_2\in (1;2)$ thì $A<0$ nên hàm số nghịch biến trên $(1;2)$

Nếu $x_1,x_2\in (0;1)$ thì $A>0$ nên hàm số nghịch biến trên $(0;1)$

 

 


Các câu hỏi tương tự
Truong Dung
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết
Thiên Yết
Xem chi tiết
Đặng Thanh Nga
Xem chi tiết
phantuananh
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
Truong Dung
Xem chi tiết
Bạch Dương
Xem chi tiết