Cho x + 3 6 = 9 18 . Giá trị của x là:
A. x = 0
B. x = 1
C. x = 2
D. x = 3
1.Tìm giá trị của x sao cho hai biểu thức có giá trị bằng nhau: 0,35x+3/4x và 4+x/10+x-39
2.Tìm giá trị của x sao cho biểu thức sau có giá trị bằng 6: (1+x)^3+(1-x)^3-6x(x+1)
3. Giải các phương trình sau:
a,,(7x-2x)(2x-1)(x+3)=0
b,(4x-1)(x-3)-(x-3)(5x+2)=0
c, (x+4)(5x+9)-x^2+16=0
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
Lê Nhật Hằng cảm ơn bạn nha
Cho đa thức \(P(x) = - 9{x^6} + 4x + 3{x^5} + 5x + 9{x^6} - 1\).
a) Thu gọn đa thức P(x).
b) Tìm bậc của đa thức P(x).
c) Tính giá trị của đa thức P(x) tại \(x = - 1;x = 0;x = 1\).
a) \(\begin{array}{l}P(x) = - 9{x^6} + 4x + 3{x^5} + 5x + 9{x^6} - 1 = ( - 9{x^6} + 9{x^6}) + 3{x^5} + (4x + 5x) - 1\\ = 0 + 3{x^5} + 9x - 1 = 3{x^5} + 9x - 1\end{array}\).
b) Bậc của đa thức là 5.
c) Thay \(x = - 1;x = 0;x = 1\) vào đa thức ta được:
\(\begin{array}{l}P( - 1) = 3.{( - 1)^5} + 9.( - 1) - 1 = 3.( - 1) - 9 - 1 = - 3 - 9 - 1 = - 13.\\P(0) = {3.0^5} + 9.0 - 1 = 3.0 - 1 = 0 - 1 = - 1.\\P(1) = {3.1^5} + 9.1 - 1 = 3.1 + 9 - 1 = 3 + 9 - 1 = 11.\end{array}\)
Cho các biểu thức:
A = x - 3 x x + 2 và B = x x - 3 - 3 x + 3 : x + 9 2 x + 6
với x ≥ 0 và x ≠ 9
a, Tính giá trị của A khi x = 25
b, Rút gọn B
c, Tìm các giá trị x nguyên để A.B có giá trị nguyên
a, Thay x = 25, ta tính được A = 10 7
b, Rút gọn được B =
2
x
-
3
c, Ta có A.B = 2 - 4 x + 2 => 2 + 2 ∈ Ư 4 . Từ đó tìm được x = 0, x = 4
Cho hai biểu thức: P = (sqrt(x - 2))/(sqrt(x) - 3) và Q = √x 6√x + 3 √x-3 9-x √x+3 (với x>0; x#9) a) Tính giá trị của P khi x = 9 . b) Rút gọn Q. c) Tìm x để biểu thức A = P.Q đạt giá trị nhỏ nhất.
Cho biểu thức B = \(\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)
a. Tìm tập xác định và rút gọn B
b. Tìm giá trị của B với |x+1 | = 2
c. Tìm giá trị nguyên của x để B nhận giá trị nguyên.
Cho biểu thức $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}$ và $B=\dfrac{3 \sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{4 x+6}{x-9}$ với $x \geq 0, x \neq 9$
1. Tình giá trị của biểu thức $A$ khi $x=\dfrac{1}{9}$.
2. Rút gọn biểu thức $B$.
3. Tìm giá trị của $x$ để biểu thức $P=A: B$ đạt giá trị nhỏ nhất.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
toán lớp 9 khó zậy em đọc k hỉu 1 phân số
Câu 1: Cho biết thì giá trị của x bằng
A. –1.
B. –4.
C. 4.
D. –3.
Câu 2: Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?
A. –6.
B. 0.
C. –9.
D. –1.
Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a⊥c và b⊥c thì kết luận nào sau đây đúng?
A. c // a .
B. c // b.
C. ab.
D. a // b.
Câu 4: Ở hình vẽ bên, ta có và là cặp góc
A. trong cùng phía.
B.đồng vị.
C. so le trong.
D. kề bù.
Câu 1: Cho biết
thì giá trị của x bằng
A. –1.
B. –4.
C. 4.
D. –3.
Câu 2: Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?
A. –6.
B. 0.
C. –9.
D. –1.
Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a⊥c và b⊥c thì kết luận nào sau đây đúng?
A. c // a .
B. c // b.
C. ab.
D. a // b.
Câu 4: Ở hình vẽ bên, ta có và là cặp góc
A. trong cùng phía.
B.đồng vị.
C. so le trong.
D. kề bù.
Câu này chưa có hình vẽ
b1: cho phân thức:
A= (3-x/ x+3 * x^2+6x+9/x^2-9 + x/x+3 ) : 3x^2/ x+3
a, rút gọn
b, tính giá trị của A với x=-1/2
c, tính giá trị của x để A >0
b2: cho phân thức:
B= (x/x^2-4 + 2/2-x + 1/x+2) : (x-2 + 10-x^2/x+2 )
a,rút gọn B
b, tính giá trị của B khi giá trị tuyệt đối của x=1/2
c, tính giá trị của x để B<0
B1:
\(a,A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x^2-9\right)}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)}{x^2-9}+\frac{x\left(x-3\right)}{x^2-9}\right).\frac{x+3}{3x^2}\)
\(=\frac{3x+9-x^2-3x+x^2-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{9-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{3\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)3x^2}\)
\(=\frac{3-x}{x^3-3x^2}\)
B2:
\(a,B=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x+2}{x^2-4}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x-2x-4+x-2}{x^2-4}\right):\frac{6}{x+2}\)
\(=-\frac{6}{x^2-4}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)6}=-\frac{1}{x-2}\)
cn ĐKXĐ và phần b,c của cả 2 bài,bn tự lm nốt
Câu 4: Giá trị của để số chia hết cho là
A. x = 3,y = 6 B. x = 5, y = 4. C. x = 7, y = 2. D. x = 9, y = 0
cho x≠0 thõa mãn x=\(\dfrac{1}{x}=a\) là một hằng số .Tính theo a giá trị của biểu thức :
\(A=x^3+\dfrac{1}{x^3}\), \(B=x^6+\dfrac{1}{x^6}\), \(C=x^7+\dfrac{1}{x^7}\)
Sửa đề: \(x+\dfrac{1}{x}=a\)
\(A=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)=a^3-3a\\ B=x^6+\dfrac{1}{x^6}=\left(x^3+\dfrac{1}{x^3}\right)^2-2=\left(a^3-3a\right)^2-2=a^6-6a^4+9a^2-2\\ C=x^7+\dfrac{1}{x^7}=\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)-\left(x+\dfrac{1}{x}\right)\)
Mà \(x^4+\dfrac{1}{x^4}=\left(x^2+\dfrac{1}{x^2}\right)^2-2=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^2-2=\left(a^2-2\right)^2-2=a^4-4a^2+2\)
\(\Leftrightarrow C=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a=...\)