A = 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 2021 + 2 mũ 2022 = bao nhiêu
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
bạn không nên gửi những thứ linh tinh này vào olm nhé. Có người bị ám cả đời vì đọc rồi đấy
So sánh
A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2021 và B = 2 mũ 2022
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
A = 2 + 2 2 + 2 3 + . . . + 2 2021 ⇔ 2 A = 2 2 + 2 3 + 2 4 + . . . + 2 2022 ⇔ 2 A − A = ( 2 2 + 2 3 + 2 4 + . . . + 2 2022 ) − ( 2 + 2 2 + 2 3 + . . . + 2 2021 ) ⇔ A = 2 2022 − 2 2 2022 − 2 < 2 2022 ⇒ A < B
So sánh A và B : 1+2+2 mũ 2 +...+2 mũ 2021 + 2 mũ 2022 và B= 2 mũ 2023 -1 .
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
BÀI 7 tính nhanh các tổng sau:A=1=2 mũ 2 +2 mũ 3 +....+2 mũ 2021 + 2 mũ 2022 giúp mik với
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
so sánh
A=2+2 mũ 2+...+2 mũ 2021 với B=2 mũ 2022
\(A=2+2^2+...2^{2021}\)
\(\Rightarrow A+1=1+2+2^2+...2^{2021}\)
\(\Rightarrow A+1=\dfrac{2^{2021+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2022}-1\)
\(\Rightarrow A=2^{2022}-2< 2^{2022}=B\)
\(\Rightarrow A< B\)
CHo A=2+2 mũ2+2 mũ3+.....+2 mũ 2020+2 mũ 2021+ 2 mũ 2022 Chứng tỏ rằng A chia hết cho 3
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 2021 = bao nhiêu
+ 22021 hay +....+ 22021 vậy bạn?
tính giá trị biểu thức sau
4A-3 mũ 2023
A=1-3+3 mũ 2 -3 mũ 3 +...........-3 mũ 2021+ 3 mũ 2022
cho mình câu trả lời chi tiết nhé
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
Tính A = 7 mũ 2024 - 7 mũ 2023 + 7 mũ 2022 - 7 mũ 2021 + ... + 7 mũ 2 - 7
\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)
=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)
=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)
=>\(8A=7^{2025}-7\)
=>\(A=\dfrac{7^{2025}-7}{8}\)