b) Rút gọn
2 x 2 - y 2 3 x 2 + 6 x y + 3 y 2 4
Rút gọn vế sau rồi tính: A= (a+b)*(-x-y) - (a-y) * (b-x)/abxy*(xy + ay + ab +by)
Sau khi rút gọn xong hãy tính A với a= -2 b=3/2 x=1/3 y=-1
$B=\dfrac{2}{x+y} \sqrt{\dfrac{3(x+y)^{2}}{4}}$ với $x+y>0$;
Rút gọn
\(=\dfrac{2}{x+y}\cdot\dfrac{\sqrt{3}\left(x+y\right)}{2}=\sqrt{3}\)
1) rút gọn
a) \(\dfrac{x^2+3x-y^2-3y}{x^2-y^2}=\)
b) \(\dfrac{x^3+3x^2-2}{x^3+3x+4}=\)
\(b,\dfrac{x^3+3x^2-2}{x^3+3x+4}=\dfrac{x^3+x^2+2x^2+2x-2x-2}{x^3+x^2-x^2-x+4x+4}\\ =\dfrac{x^2\left(x+1\right)+2x\left(x+1\right)-2\left(x+1\right)}{x^2\left(x+1\right)-x\left(x+1\right)+4\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^2+2x-2\right)}{\left(x+1\right)\left(x^2-x+4\right)}=\dfrac{x^2+2x-2}{x^2-x+4}\)
\(a,\dfrac{x^2+3x-y^2-3y}{x^2-y^2}=\dfrac{\left(x^2-y^2\right)+\left(3x-3y\right)}{x^2-y^2}\\ =\dfrac{\left(x-y\right)\left(x+y\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y+3}{x+y}\)
Bài 1: Rút gọn biểu thức
a, (x+y)^2-(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
Bài 2: Tìm X
a) (2X+1)^2-4(x+2)^2=9
b) 3(x-1)^2-3x(x-5)=21
Bài 3: Cho biểu thức
M=(x-3)^3-(x-1)^3+12x(x-1)
a, Rút gọn M
b, Tính giá trị M tại x= -2/3
c, Tìm x để M=-16
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
a, \(A=\left(x-y\right)^2+\left(x+y\right)^2\)
\(=x^2-2xy+y^2+x^2+2xy+y^2\)
\(=2x^2+2y^2\)
a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\\ =x^2-2xy+y^2+x^2+2xy+y^2=2x^2+2y^2\)
b) \(B=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\\ =4x^2-4x+1-2\left(4x^2-12x+9\right)+4\\ =4x^2-4x+1-8x^2+24x-18+4\)
\(=-4x^2+20x-13\)
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
rút gọn a)(x+y)^2-(x-y)^2 b)(a+b)^3+(a-b)^3-2a3
Rút gọn biểu thức:
a) 3.(x+y).(x-y)+(x+y)^2+(x-y)^2
b) (2x+y)^2 - (y+3x)^2
a) 3.(x+y).(x-y)+(x+y)^2+(x-y)^2
=3.(x2-y2)+(x2+2xy+y2)+(x2-2xy+y2)
=3x2-3y2+x2+2xy+y2+x2-2xy+y2
=5x2-y2
b) (2x+y)^2 - (y+3x)^2
=[(2x+y)+(y+3x)][(2x+y)-(y+3x)]
=(2x+y+y+3x)(2x+y-y-3x)
=(5x+2y)(-x)
=-5x2-2xy
Rút gọn các biểu thức sau:
a) 4*(2*y + 3*x) − 3*(x − 3*y) b) x^2 + 2*x − x*(7*x − 3)
ai giúp với ạ
a)
`4*(2y+3x)-3(x-3y)`
`=8y+12x-3x+9y`
`=8y+9y+12x-3x`
`=17y+9x`
b)
`x^2 +2x-x(7x-3)`
`=x^2 +2x-7x^2 +3x`
`=x^2 -7x^2 +2x+6x`
`= -6x^2 +8x`
Rút gọn các biểu thức đại số sau:
a) \(6(y - x) - 2(x - y)\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
a) Cách 1:
\(6(y - x) - 2(x - y)\)
\( = 6y - 6x - 2x + 2y\)
\( = 8y - 8x\)
Cách 2:
\(6(y - x) - 2(x - y)\\= 6(y-x)+2(y-x)\\=(6+2).(y-x)\\=8.(y-x)\\=8y-8x\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
\( = (3{x^2} - 5{x^2}) + (x - 4x)\)
\( = - 2{x^2} - 3x\)