Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Trần Thọ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 8:30

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

Đạt Trần Thọ
10 tháng 12 2023 lúc 6:03

loading...  

An Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 21:23

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Layla Aarohi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 22:20

b) Để P nguyên thì \(\sqrt{x}+5⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}+15⋮3\sqrt{x}-1\)

\(\Leftrightarrow16⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;2;4;8;16\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;2;3;5;9;17\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;3;9\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)

Minh Anh
Xem chi tiết
Tô Mì
6 tháng 4 2023 lúc 21:57

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

Tô Mì
6 tháng 4 2023 lúc 22:16

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

Phương Cát Tường
Xem chi tiết
Akai Haruma
14 tháng 7 2023 lúc 13:40

Đề thiếu. Bạn coi lại đề.

Phạm Quỳnh Như
Xem chi tiết
Ngô Phương Linh
Xem chi tiết
Ngô Hải Nam
28 tháng 1 2023 lúc 21:48

Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 21:42

a: Khi x=3 thì \(A=\dfrac{3\cdot3}{3-2}=9\)

b: C=A+B

\(=\dfrac{3x}{x-2}-\dfrac{6}{x-2}-\dfrac{x^2+4x+4}{x^2-4}\)

\(=\dfrac{3x-6}{x-2}-\dfrac{x+2}{x-2}\)

\(=\dfrac{3x-6-x-2}{x-2}=\dfrac{2x-8}{x-2}\)

c: Để C nguyên thì 2x-4-4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6\right\}\)

Hà Chi
Xem chi tiết
😈tử thần😈
1 tháng 6 2021 lúc 17:50

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(A=1-\dfrac{1}{51}=\dfrac{50}{51}\)

Câu B làm tương tự câu A

IamnotThanhTrung
1 tháng 6 2021 lúc 17:35

bai BA la bai nao

😈tử thần😈
1 tháng 6 2021 lúc 17:59

b) \(B=\dfrac{3}{1.5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+\dfrac{3}{13+17}+\dfrac{3}{17+21}+\dfrac{3}{21.25}+\dfrac{3}{25.29}\)\(B=3.\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13+17}+\dfrac{1}{17+21}+\dfrac{1}{21.25}+\dfrac{1}{25.29}\right).4:4\)

\(B=\dfrac{3}{4}.\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13+17}+\dfrac{4}{17+21}+\dfrac{4}{21.25}+\dfrac{4}{25.29}\right)\)

\(B=\dfrac{3}{4}.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{25}-\dfrac{1}{29}\right)\)

\(B=\dfrac{3}{4}.\left(1-\dfrac{1}{29}\right)\)

\(B=\dfrac{3}{4}.\dfrac{28}{29}=\dfrac{21}{29}\)