tìm x để đa thức A(x)=4x2+6x+10 đạt giá trị nhỏ nhất
a. Tìm a để đa thức A(x) = 3x3 - 5x2 + x + 2a chia hết cho đa thức B(x) = x + 2
b.tìm giá trị nhỏ nhất của đa thức sau A = 3x2 + 14y2 - 12xy + 6x - 8y + 10
cho biểu thức A\(=X^4-6X^3+18x^2-6xy+y^2+2012\)
tìm x,y để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Cho biểu thức A=(3-x : x+3 × x^2 + 6x +9 : x^2 -9 + x: x+3 ) : 3+6x-3x^2 : x+3
a) Rút gọn biểu thức A . b) tìm x để A =1:15
c) tìm x để A đạt giá trị nhỏ nhất và giá trị nhỏ nhất là bao nhiêu ?
a) Tìm số a để đa thức x² + 5x + a chia hết cho đa thức x - 1
b) Chứng minh rằng: x² – x + 1 > 0 với mọi số thực x?
c) Tìm giá trị nhỏ nhất của biểu thức A = x² – 6x + 11
d) Tìm giá trị lớn nhất của biểu thức B = – x² + 4x – 5
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Tìm giá trị của x và y để đa thức P=x2+y2- x+6*y+10 đạt giá trị nhỏ nhất
Xét P\(=x^2+y^2-x+6y+10\)
\(P=x^2-x+y^2+6y+10\)
\(P=x^2-2x\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
\(P=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
\(\left(y+3\right)^2\ge0\)với mọi y
\(\rightarrow P\ge\frac{3}{4}\)với mọi x, y
->Pnhỏ nhất =\(\frac{3}{4}\)khi \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\\\left(y+3\right)^2=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
a. Tìm giá trị x,y để :
S = | x + 2 | + | 2y - 10 | + 2014 đạt giá trị nhỏ nhất
b. Tìm giá trị nhỏ nhất của biểu thức : | x + 6 | + | 7 - x |
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
Cho biểu thức A = 3/(x-1)
a) Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.
b) Tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó.
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
Tìm giá trị nguyên của x để biểu thức sau đạt giá trị nhỏ nhất:
A = |x – 9| + 10
A=|x-9|+10
Ta có |x-9| >= 0 với mọi x
=> |x-9|+10 >= 0+10
hay A >= 10
Dấu "=" xảy ra <=> |x-9|=0
<=> x-9=0
<=> x=9
Vậy Min A=10 đạt được khi x=9
A = |x - 9| + 10
Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)
\(\Rightarrow\left|x-9\right|+10\ge10\)
Dấu "=" xảy ra khi:
|x - 9| = 0
=> x - 9 = 0
=> x = 9
Vậy AMIN = 10 khi x = 9