Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Trang Nguyễn
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:30

\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:34

\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
29 tháng 8 2021 lúc 14:39

\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)

\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

changchan
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 20:53

Đề thiếu rồi bạn ơi

changchan
24 tháng 8 2021 lúc 21:25

=0 nữa nha cảm ơn bạn nhanh nhanh giúp mình chút:3

Mai Thị Loan
Xem chi tiết
Ngọc Khánh
Xem chi tiết
Trên con đường thành côn...
13 tháng 11 2021 lúc 17:57

a)

Ta có:

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)

\(\ge0-2=-2\)

Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

b)\(B=4x^2+4x+8=4x^2+4x+1+7\)

\(=\left(2x+1\right)^2+7\ge0+7=7\)

Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

Trên con đường thành côn...
13 tháng 11 2021 lúc 18:10

c)

Ta có:

\(C=3x-x^2+2=2-\left(x^2-3x\right)\)

\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)

\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)

Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

d) Ta có:

\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)

\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)

Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)

e) Ta có:

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

\(\ge0+0+2=2\)

Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

chu ngọc trâm anh
Xem chi tiết
quang phan duy
13 tháng 6 2019 lúc 16:31

biến đổi tương đương A = \((x^2-6x+9)+(y^2-22y+121)+(z^2+12z+36)\)\(+2019\)

=> A = \((x-3)^2+(y-11)^2+(z+6)^2+2019\ge2019\)

VẬY GTNN CỦA A LÀ 2019 ĐẠT ĐƯỢC TẠI x=3 , y=11,z=-6

Hòa Huỳnh
Xem chi tiết
Minh Hiếu
27 tháng 1 2022 lúc 8:56

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)

Hi HI Hi
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 22:22

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
22 tháng 12 2021 lúc 22:23

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

chu minh ngọc
Xem chi tiết
Tớ Đông Đặc ATSM
13 tháng 6 2019 lúc 12:53

A= X^2- 6X +9 + y^2 -22y + 121+ z^2+12z+ 36+2019

= (x-3)2+(y-11)2+(z+6)2+2019

Lại có (x-3)2+(y-11)2+(z+6)2\(\ge\)0

=> A\(\ge\)2019

Vậy Min A = 2019 <=> x= 3; y=11; z= -6

Ôn Cẩm Minh
Xem chi tiết
Đoàn Đức Hà
25 tháng 5 2021 lúc 15:39

\(2x^2+9y^2-6xy-6x-12y+2004\)

\(=x^2-10x+25+x^2+9y^2+4-6xy+4x-12y+1975\)

\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+1975\ge1975\)

Dấu \(=\)khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\).

Khách vãng lai đã xóa