\(\dfrac{x}{2}\)=\(\dfrac{18}{x}\)
A.x=− 6
B. x= 6
C. x∈ {6; − 6}
D. đáp án khác
tính( rút gọn)
a)\(\dfrac{a}{9a-18}-\dfrac{b-1}{6b}-\dfrac{ab-3a+6}{9ab-18b}\)
b)\(\dfrac{x}{a-2}+\dfrac{2x-ax-a}{2a-a^2}-\dfrac{x}{a}\)
a: \(=\dfrac{a}{9\left(a-2\right)}-\dfrac{b-1}{6b}-\dfrac{ab-3a+6}{9b\left(a-2\right)}\)
\(=\dfrac{2ab}{18b\left(a-2\right)}-\dfrac{3\left(b-1\right)\left(a-2\right)}{18b\left(a-2\right)}-\dfrac{2ab-6a+12}{18b\left(a-2\right)}\)
\(=\dfrac{2ab-3\left(ba-2b-a+2\right)-2ab+6a-12}{18b\left(a-2\right)}\)
\(=\dfrac{6a-12-3ab+6b+3a-6}{18b\left(a-2\right)}\)
\(=\dfrac{3a+12b-3ab-18}{18b\left(a-2\right)}\)
\(=\dfrac{a+4b-ab-6}{6b\left(a-2\right)}\)
b: \(=\dfrac{xa-2x+ax+a-x\left(a-2\right)}{a\left(a-2\right)}\)
\(=\dfrac{2ax-2x+a-xa+2x}{a\left(a-2\right)}=\dfrac{xa+a}{a\left(a-2\right)}=\dfrac{x+1}{a-2}\)
Tính nhẩm.
a) 6 x 1 6 x 4 6 x 6
b) 12 : 6 18 : 6 48 : 6
c) 6 x 5 30 : 6 30 : 5
`a)`
`6 \times 1 = 6`
`6 \times 4 = 24`
`6 \times 6 = 36`
`b)`
`12 \div 6 = 2`
`18 \div 6 = 3`
`48 \div 6 = 8`
`c)`
`6 \times 5 = 30`
`30 \div 6 = 5`
`30 \div 5 = 6`
Giải các bất phương trình sau:
a) 2(3x + 1) - 4(5 - 2x) > 2(4x - 3) - 6
b) 9x2 - 3(10x - 1) < (3x - 5)2 - 21
c) \(\dfrac{x-1}{2}+\dfrac{x-2}{3}+\dfrac{x-3}{4}>\dfrac{x-4}{5}+\dfrac{x-5}{6}\)
a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)
\(\Leftrightarrow6x+2-20+8x>8x-6-6\)
\(\Leftrightarrow14x-18-8x+12>0\)
\(\Leftrightarrow6x-6>0\)
\(\Leftrightarrow6x>6\)
hay x>1
Vậy: S={x|x>1}
b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)
\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)
\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)
\(\Leftrightarrow-1< 0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
\(a.x+\dfrac{2x+\dfrac{x-1}{5}}{3}\)
\(b.\dfrac{3x-1-\dfrac{x-1}{2}}{3}-\dfrac{2x+\dfrac{1-2x}{3}}{2}=\dfrac{\dfrac{3x-1}{2}-6}{5}\) giải pt
Chọn câu sai . Các số nguyên x,y mà \(\dfrac{x}{2}\)=\(\dfrac{3}{y}\)là
A x=1;y=6
B x=2; y= -3
C x= -6 ; y= -1
D x=2;y=3
a, \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b, \(\dfrac{x+2}{x-3}-\dfrac{x^2+6}{x^2-3x}\)
c, \(\dfrac{1}{9x-18}+\dfrac{16-7x}{72-18x}+\dfrac{5}{12x-24}\)
a.\(\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{1}{x}\)
a (2+x):5=6
b 2+x:5=6
c 2x-3=11
d 3.(x-18)+75=0
a) (2 + x) : 5 = 6
2 + x = 6 $\times$ 5
2 + x = 30
x = 30 - 2
x = 28
b) 2 + x : 5 = 6
x : 5 = 6 - 2
x : 5 = 4
x = 4 $\times$ 5
x = 20
c) 2x - 3 = 11
2x = 11 + 3
2x = 14
x = 14 : 2
x = 7
d) 3 . (x - 18) + 75 = 0
3 . (x - 18) = -75
x - 18 = -75 : 3
x - 18 = -25
x = -25 + 18
x = -7
Tìm \(x\) biết:
\(a.x=\dfrac{1}{5}+\dfrac{-3}{7}\) \(b.\dfrac{3}{5}-\dfrac{4}{7}\div x=\dfrac{-9}{10}\) \(c.x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\) \(d.\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
\(a,x=\dfrac{1}{5}+\dfrac{-3}{7}\)
\(x=\dfrac{7}{35}+\dfrac{-15}{35}\)
\(x=-\dfrac{8}{35}\)
\(b,\dfrac{3}{5}-\dfrac{4}{7}:x=\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{5}-\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{2}\)
\(x=\dfrac{4}{7}:\dfrac{3}{2}\)
\(x=\dfrac{4}{7}\times\dfrac{2}{3}\)
\(x=\dfrac{8}{21}\)
\(c,x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\)
\(x+\dfrac{3}{4}=\dfrac{-4}{6}-\dfrac{3}{6}\)
\(x+\dfrac{3}{4}=-\dfrac{7}{6}\)
\(x=-\dfrac{7}{6}-\dfrac{3}{4}\)
\(x=-\dfrac{23}{12}\)
\(d,\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{6}{18}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{13}{18}\)
\(x=\dfrac{-5}{9}-\dfrac{13}{18}\)
\(x=\dfrac{-10}{18}-\dfrac{13}{18}\)
\(x=-\dfrac{23}{18}\)
Rút gọn \(\left[\dfrac{x}{2x-6}-\dfrac{x^2}{x^2-9}+\dfrac{x}{2x-9}.\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)\right]:\dfrac{x^2-5x-6}{18-2x^2}\)
ĐKXĐ: \(x\ne\pm3,x\ne\dfrac{9}{2}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{2x-9}.\dfrac{3\left(x-3\right)-x}{x\left(x-3\right)}\right]\) : \(\dfrac{x^2-5x-6}{-2\left(x-3\right)\left(x+3\right)}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x-3}\right]:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{x\left(x+3\right)-2x^2+2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}=1\)