tìm cặp số nguyên (x,y) thỏa mãn phươn trình \(x^2\left(y-5\right)-xy=x-y+1\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm tất cả các cặp số nguyên x,y thỏa mãn đẳng thức : \(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn phương trình: \(x^2-25=y\left(y+6\right)\)
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow x^2-25=y^2+6y\)
\(\Leftrightarrow x^2-25-y^2-6y=0\)
\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)
\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
Ta giải các hệ phương trình sau :
1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)
Tìm cặp số (x,y) nguyên thỏa mãn :
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x-1\)
Ta có :
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x+1\left(∗\right)\Rightarrow x^2-x+1|3x+1\Rightarrow x^2-x+1\le\left|3x-1\right|\)
TH1 :
\(x\ge\frac{1}{3}\Leftrightarrow x^2-x+1\le3x-1\Leftrightarrow x^2-4x+2\le0\Leftrightarrow2-\sqrt{2}\le x\le2+\sqrt{2}\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{1;2;3\right\}\)
TH2 :
\(x\le\frac{1}{3}\Leftrightarrow x^2-x+1\le-3x+1\Leftrightarrow x^2+2x\le0\Leftrightarrow-2\le x\le0\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3\right\}\)
+) \(\forall x=−1⇒\left(∗\right)⇔3(y^2-y)=−4⇔y^2−y=−\frac{4}{3}\left(vn\right)\)
+) \(\forall x=0⇒\left(∗\right)⇔y^2=−1\left(vn\right)\)
+) \(\forall x=1\Rightarrow\left(∗\right)\Leftrightarrow y^2+y=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\left(tm\right)}\)
Với x = 2 ; x = 3 ... ( vn ) ( Làm tương tự như trên:v )
Vậy các nghiệm nguyên của pt đã cho là \(\left(x;y\right)=\left\{\left(-2;1\right);\left(1;1\right);\left(1;-2\right)\right\}\)
@LetHateHim : Đề bài là 3x- 1 mà bạn
Tìm tất cả các số nguyên x,y thỏa mãn phương trình: \(x\left(y^2+7\right)+y\left(x^2+7\right)+17=xy\left(xy+3\right)\)
Tìm tất cả các cặp (x,y) nguyên thỏa mãn
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x-1\)
\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)
\(3x-1⋮x^2-x+1\)
zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)
zà thấy x=2 thỏa mãn ,=> x=1
thay zô 1 ta có
\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)
tìm tất cả các số nguyên x, y thỏa mãn
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).
Ta coi như là một phương trình bậc hai ẩn \(x+y\).
\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)
Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.
Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.
Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)
Hay \(xy=5\) hoặc \(xy=1\).
Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn phương trình: \(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
ai tích mình sai vậy ạ, xin lí do
làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
Tìm cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)