Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn phương ngọc
Xem chi tiết
An Thy
27 tháng 7 2021 lúc 8:51

a) Xét \(\Delta CAH:\) ta có: E là trung điểm AC và \(EF\parallel AH(\bot BC)\)

\(\Rightarrow F\) là trung điểm CH \(\Rightarrow EF\) là đường trung bình \(\Rightarrow EF=\dfrac{1}{2}AH\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=BH.CH\)

Ta có: \(EF^2=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2=\dfrac{1}{4}.BH.HC\)

b) Ta có: \(\angle BAE+\angle BFE=90+90=180\Rightarrow ABFE\) nội tiếp

\(\Rightarrow\angle FBE=\angle FAE\)

Xét \(\Delta CBE\) và \(\Delta CAF:\) Ta có: \(\left\{{}\begin{matrix}\angle CBE=\angle CAF\\\angle BCAchung\end{matrix}\right.\)

\(\Rightarrow\Delta CBE\sim\Delta CAF\left(g-g\right)\Rightarrow\dfrac{AF}{BE}=\dfrac{AC}{BC}=cosC\Rightarrow AF=cosC.BE\)

undefined

 

camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 15:05

a: Xét ΔAHC có 

E là trung điểm của AC

EF//AH

Do đó: F là trung điểm của CH

Xét ΔAHC có 

E là trung điểm của AC

F là trung điểm của CH

Do đó: EF là đường trung bình của ΔAHC

Suy ra: \(EF=\dfrac{AH}{2}\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền CB

nên \(AH^2=HB\cdot HC\)

hay \(AH=\sqrt{HB\cdot HC}\left(2\right)\)

Từ (1) và (2) suy ra \(EF=\dfrac{\sqrt{HB\cdot HC}}{2}\)

hay \(EF^2=\dfrac{HB\cdot HC}{4}\)

 

Lê Thị Diệp
Xem chi tiết
đỗ lạc duyên
Xem chi tiết
Bách Trần
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
グエン ヴァンハイ
Xem chi tiết
Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 20:11

Sửa đề: \(BE=BC\cdot cos^3B\)

Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)

\(=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)