tìm GTNN của D= \(x-2\sqrt{x-2}+999\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTLN hoặc GTNN của:
\(C=\sqrt{-x^2+6x}\)
\(D=\sqrt{6x-2x^2}\)
Ta có:
\(C=\sqrt{-x^2+6x}\)
Mà: \(\sqrt{-x^2+6x}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{-x^2+6x}=0\)
\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)
\(\Leftrightarrow-x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
\(D=\sqrt{6x-2x^2}\)
Mà: \(\sqrt{6x-2x^2}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{6x-2x^2}=0\)
\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)
\(\Leftrightarrow2x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)
Dấu "=" xảy ra khi \(x=3\)
Vậy \(maxC=3\)
\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)
\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)
Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)
Tìm GTNN của\(D=\frac{2002x+2003\sqrt{1-x^2}+2004}{\sqrt{1-x^2}}\)
Xét biểu thức chứa ẩn: \(\sqrt{1-x^2}\)
Biểu thức xác định khi à chỉ khi \(-1\le x\le1\)nhưng trái lại, điều kiện để D xác định lại là \(-1< x< 1\)
Do đó: minD đạt được khi mẫu thức của D đạt max \(\Leftrightarrow x=0\)
Vậy minD \(=\frac{2002\cdot0+2003\sqrt{1-0^2}+2004}{\sqrt{1-0^2}}=4007\)khi x = 0
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
Tìm GTNN của biểu thức:
A=\(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}\)
\(A=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}\)
\(A\ge\sqrt{\left(x+\dfrac{1}{2}+\dfrac{1}{2}-x\right)^2+\left(\sqrt{7}\right)^2}=2\sqrt{2}\)
\(A_{min}=2\sqrt{2}\) khi \(x+\dfrac{1}{2}=\dfrac{1}{2}-x\Leftrightarrow x=0\)
Bạn cũng có thể bình phương A lên
Tìm GTNN của A=\(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
M=A.B
A=\(\dfrac{x}{\sqrt{x}-2}\),B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
Tìm GTNN của M
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
=>\(M=\dfrac{x}{\sqrt{x}+2}\)
=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)
=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)
=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)
Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)
=>\(\sqrt{x}=0\)
=>x=0(nhận)