\(Cho f(n) = {2n+1+\sqrt{n(n+1)} \over \sqrt{n}+\sqrt{n+1}}\)
\(Tính f(1) + f(2) +...+ f(2020)\)
Cho \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}\)
Tính \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)\)
Ta đi chứng minh công thức tổng quát: \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}=\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\)
Thật vậy: \(\left[\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\right]\left(\sqrt{n}+\sqrt{n+1}\right)=\left(n+1\right)\sqrt{n\left(n+1\right)}-n^2+\left(n+1\right)^2-n\sqrt{n\left(n+1\right)}=2n+1+\sqrt{n\left(n+1\right)}\)Áp dụng, ta được: \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)=\left(2\sqrt{2}-1\sqrt{1}\right)+\left(3\sqrt{3}-2\sqrt{2}\right)+\left(4\sqrt{4}-3\sqrt{3}\right)+...+\left(2021\sqrt{2021}-2020\sqrt{2020}\right)=2021\sqrt{2021}-1\)
Cho \(f\left(n\right)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt[]{2n-1}}\) với n nguyên dương. Tính \(f\left(1\right)+f\left(2\right)+...+f\left(40\right)\).
\(f\left(n\right)=\dfrac{2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left(2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}\right)}{2n+1-2n+1}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n+1}\right)^3}{2}=\dfrac{\left(2n+1\right)\sqrt{2n+1}-\left(2n-1\right)\sqrt{2n+1}}{2}\)
\(\Leftrightarrow f\left(1\right)+f\left(2\right)+...+f\left(40\right)=\dfrac{3\sqrt{3}-1\sqrt{1}+5\sqrt{5}-3\sqrt{3}+...+81\sqrt{81}-79\sqrt{79}}{2}\\ =\dfrac{81\sqrt{81}-1\sqrt{1}}{2}=\dfrac{9^3-1}{2}=364\)
Giúp mk lm bài này nha mấy bạn: Cho f(n)=\(\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\) với n nguyên dương. Hãy tính giá trị của tổng: f(1)+f(2)+f(3)+..........+f(40)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
a) lim \(\left(-3n^3+n^2-1\right)\)
minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
cho f(n) = \(\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}+\frac{1}{\sqrt[3]{4}}+...+\frac{1}{\sqrt[3]{n}}\) nϵN*. GIá trị lim\(\frac{f\left(n\right)}{n^2+1}\) bằng ?
\(\frac{1}{\sqrt[3]{2}}>\frac{1}{\sqrt[3]{3}}>...>\frac{1}{\sqrt[3]{n}}\)
\(\Rightarrow\frac{n-1}{\sqrt[3]{n}}< f\left(n\right)< \frac{n-1}{\sqrt[3]{2}}\)
Mà \(\lim\limits\frac{n-1}{\sqrt[3]{n}\left(n^2+1\right)}=\lim\limits\frac{n-1}{\sqrt[3]{n}\left(n^2+1\right)}=0\)
\(\Rightarrow\lim\limits\frac{f\left(n\right)}{n^2+1}=0\)
Bài 1:Tính S= \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Bài 2: Tính S= 1+3+9+27+...+1438907
Bài 3: Cho \(f\left(1\right)=1;f\left(m+n\right)=f\left(m\right)+f\left(n\right)+mn.\)Tính f(10), f(2015) (Với m, n là các số nguyên dương)
Bài 1
Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)
Tương tự như trên ta được
S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100
= 98 + 1/2 - 1/100
= 9849/100
Đặt f ( n ) = ( n 2 + n + 1 ) 2 + 1 . Xét dãy số ( u n ) sao cho u n = f ( 1 ) . f ( 3 ) . f ( 5 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . f ( 6 ) . . . f ( 2 n ) . Tính lim n u n
A. l i m n u n = 2
B. l i m n u n = 1 3
C. l i m n u n = 3
D. l i m n u n = 1 2
Cho f(n) = {2n +1 +√[n.(n+1)]}/ √n +√(n+1)
Tính f(1)+f(2)+...+f(2018)