Cho \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}\)
Tính \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)\)
Giúp mk lm bài này nha mấy bạn: Cho f(n)=\(\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\) với n nguyên dương. Hãy tính giá trị của tổng: f(1)+f(2)+f(3)+..........+f(40)
Bài 1:Tính S= \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Bài 2: Tính S= 1+3+9+27+...+1438907
Bài 3: Cho \(f\left(1\right)=1;f\left(m+n\right)=f\left(m\right)+f\left(n\right)+mn.\)Tính f(10), f(2015) (Với m, n là các số nguyên dương)
Cho f(n) = {2n +1 +√[n.(n+1)]}/ √n +√(n+1)
Tính f(1)+f(2)+...+f(2018)
mọi người giúp mình với! mình cần gấp,thanks
bài 1: cho hàm số f(n) xác định trên N thỏa:
f(n)=n-3 nếu \(n\ge1000\);
f(n)=\(f\left[f\left(n+5\right)\right]\) nếu n<1000
CMR: \(\frac{f\left(30\right)+f\left(4\right)}{2}+f\left(95\right)=1995\)
Bài 2:
a,Vẽ đồ thị hs y=f(x)=x-|x|
b, Vẽ ĐTHS y=\(\sqrt{x^2-4x+4}+\sqrt{x^2+2x+1}\)
Bài 1. cho \(f\left(x\right)=\left(2x^3-21x-29\right)^{2019}\). Tính f(x) tại \(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
Bài 2. Tìm số tự nhiên n biết rằng: \(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\)
Bài 3. Tính \(A=\left(3x^3+8x^2+2\right)\)với \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Bài 4. CMR: \(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n.\sqrt{\frac{n+1}{2}}\)
Nhìn cái đề bài đáng sợ kinh, ai giúp tớ vs
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))