Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 20:48

a) Ta có: \(\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) ĐKXĐ: \(x\ge-2\)

Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+\dfrac{4}{5}\cdot5\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7(thỏa ĐK)

Trúc Giang
4 tháng 7 2021 lúc 20:52

a) \(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Vậy:.....

b) ĐKXĐ: x ≥ -2

 \(\Leftrightarrow\sqrt{9}.\sqrt{x+2}-5.\sqrt{x+2}+\dfrac{4}{5}.\sqrt{25}.\sqrt{x+2}=6\)

<=> \(\sqrt{x+2}.\left(3-5+\dfrac{4}{5}.5\right)=6\)

\(\Leftrightarrow2.\sqrt{x+2}=6\)

\(\Leftrightarrow\sqrt{x+2}=3\)

<=> x + 2 = 9

<=> x = 7

ZURI
4 tháng 7 2021 lúc 20:54

Tham khảo ạ:

a) Ta có: √(x−3)2=2(x−3)2=2

⇔|x−3|=2⇔|x−3|=2

⇔[x−3=2x−3=−2⇔[x=5x=1⇔[x−3=2x−3=−2⇔[x=5x=1

b) ĐKXĐ: x≥−2x≥−2

Ta có: ⇔3√x+2−5√x+2+45⋅5√x+2=6⇔3x+2−5x+2+45⋅5x+2=6

⇔2√x+2=6⇔2x+2=6

⇔x+2=9⇔x+2=9

hay x=7(thỏa ĐK)

Ly Ly
Xem chi tiết
Nguyễn Ngọc Lộc
4 tháng 7 2021 lúc 16:03

a, \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy ...

b, ĐKXĐ : \(x\ge-1\)

\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=-\dfrac{5}{3}\)

Vậy phương trình vô nghiệm

Lê Thị Thục Hiền
4 tháng 7 2021 lúc 16:04

a)Pt \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy...

b)Đk:\(x\ge-1\)

Pt\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow-3\sqrt{x+1}=5\) (vô nghiệm)

Vậy...

trương khoa
4 tháng 7 2021 lúc 16:04

a\(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy S={\(\dfrac{5}{2};-\dfrac{3}{2}\)}

Ly Ly
Xem chi tiết
An Thy
4 tháng 7 2021 lúc 16:45

a) \(\sqrt{\left(x-3\right)^2}=2\Rightarrow\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Rightarrow\sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\)

\(\Rightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Rightarrow2\sqrt{x+2}=6\Rightarrow\sqrt{x+2}=3\Rightarrow x+2=9\Rightarrow x=7\)

\(Q=\dfrac{1}{x-2\sqrt{x}+3}\)

Ta có: \(x-2\sqrt{x}+3=x-2\sqrt{x}+1+2=\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow\dfrac{1}{x-2\sqrt{x}+3}\le2\Rightarrow Q_{max}=2\) khi \(x=1\)

Ly Ly
Xem chi tiết
Nguyễn Ngọc Lộc
7 tháng 7 2021 lúc 18:54

Bài 1 :

a, ĐKXĐ : \(3-2x\ge0\)

\(\Rightarrow x\le\dfrac{3}{2}\)

Vậy ...

b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)

\(\Rightarrow2x+1< 0\)

\(\Rightarrow x< -\dfrac{1}{2}\)

Vậy ...

Bảooo
7 tháng 7 2021 lúc 18:59

a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)

b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)

( bây giờ mình bận nên làm trước 2 bài =))

 

missing you =
7 tháng 7 2021 lúc 19:01

a, \(x\le\dfrac{3}{2}\)

b, \(x< -\dfrac{1}{2}\)

*a, \(\sqrt{\left(2x-3\right)^2}=5=>|2x-3|=5=>\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

b, \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)

\(< =>3\sqrt{x+1}+2\sqrt{x+1}-4\sqrt{x+1}=3\)\(\left(x\ge-1\right)\)

\(< =>\sqrt{x+1}=3=>x+1=9=>x=8\left(tm\right)\)

 

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 20:43

a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)

\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)

\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)

\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)

\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)

\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)

\(\Leftrightarrow30\sqrt{x-3}=7x+18\)

\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)

\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)

\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)

Vậy: Phương trình vô nghiệm

Lê Thị Thục Hiền
6 tháng 7 2021 lúc 20:43

a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b)Đk:\(x\ge-1\)

Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)

Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=5\)

\(\Leftrightarrow x=24\left(tm\right)\)

Phía sau một cô gái
6 tháng 7 2021 lúc 20:49

a.  \(\sqrt{\left(x+1\right)^2}\)  \(=3\)

⇔   \(\left|x+1\right|=3\)

⇔    \(\left|x\right|=2\)

⇒     \(x=2\) và  \(x=-2\)

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:12

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

....
Xem chi tiết
Thanh Quân
11 tháng 6 2021 lúc 9:43

a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)   (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )

Khi đó pt :

<=> 7+a =3 + \(\sqrt{5}\)

<=> 4+a = \(\sqrt{5}\)

<=> (4+a)\(^2\) = 5

<=> 16 + 8a + a\(^2\) = 5

<=>a\(^2\) + 8a+ 11 = 0

<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại) 

Vậy Pt vô nghiệm.

b) \(\sqrt{3x^2-4x}\) = 2x-3

<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9 

<=> x\(^2\)-8x+9 = 0

<=> x=1 , x=9 

Vậy S={1;9} 

c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2

<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)

<=> x=7,x=5

Vậy x=5 hoặc x=7

 

Ly Ly
Xem chi tiết
Mai Thị Thúy
Xem chi tiết