Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 11 2022 lúc 23:50

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

Nguyễn Thị Thương
Xem chi tiết
Tran Thuy Linh
Xem chi tiết
tthnew
3 tháng 8 2019 lúc 18:58

Em đã thử liên hợp nhưng cái ngoặc to xấu xí quá:(

Vo Thi Minh Dao
Xem chi tiết
Eren
11 tháng 11 2018 lúc 19:54

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

Đinh Thị Ngọc Anh
Xem chi tiết
Nguyễn Quang Tâm
20 tháng 5 2017 lúc 17:52

mik ko biết vì mới chỉ học lớp 6

Ngọc Vĩ
20 tháng 5 2017 lúc 21:42

ĐKXĐ: \(x\ge\frac{1}{2}\)

Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)

Nhân liên hợp ta được:

\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)

mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)

=> x - 2 = 0 => x = 2

                                                   Vậy x = 2

s2 Lắc Lư  s2
20 tháng 5 2017 lúc 21:50

rảnh  quá 

Nguyễn Tường Vy
Xem chi tiết
Quoc Tran Anh Le
7 tháng 7 2019 lúc 21:38

\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2=x^2-4\)

\(\Leftrightarrow x^2-4x+4-x^2+4=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

Vũ Huy Hoàng
17 tháng 7 2019 lúc 17:11

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{x-2}=b;\) ta có:

\(2a^2-b^2=ab\)\(2a^2-ab-b^2=0\)

\(\Leftrightarrow2a^2+ab-2ab-b^2=0\)

\(\left(2a+b\right)\left(a-b\right)=0\)

\(\left[{}\begin{matrix}2\sqrt[3]{x+2}=-\sqrt[3]{x-2}\\\sqrt[3]{x-2}=\sqrt[3]{x+2}\end{matrix}\right.\)\(x=-\frac{14}{9}\)

Hiền Nguyễn Thị
Xem chi tiết
THN
Xem chi tiết
vũ tiền châu
3 tháng 9 2017 lúc 20:03

ta có đề bài <=> 

\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

<=> \(\left|x-3\right|+\left|x+5\right|=8\)

<=>\(\left|3-x\right|+\left|x+5\right|=8\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)

dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)

đến đây bạn tự giaỉ dấu = nhé

ThuTrang Lê
Xem chi tiết
Akai Haruma
30 tháng 7 2018 lúc 17:01

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.