cho tam giác ABC có m là trung điểm BC và O là trung đeierm của AM. trên BC lấy I sao cho vectoAI = 2/3vectoAB , vectoAJ = 2/5vectoAC chứng minh ba điểm I J O thẳng hàng
Cho tam giác ABC có BC 9cm. Trên tia AB lấy M sao cho AB BM. Trên tia AC lấy N sao cho AC CN.a Chứng minh BC là đường trung bình của tam giác AMN. Tính MN.b Kẻ AI là trung tuyến của tam giác ABC. Trên tia AI lấy J sao cho I là trung điểm AJ. Chứng minh IB MJ và M,J,N thẳng hàng
Cho tam giác ABC có M là trung điểm của BC. vẽ tia Ax//BC( Ax và BC nằm trên 2 nửa mp đối nhau có bờ là AB). Lấy D thuộc Ax sao cho AD=BM. gọi I là trung điểm AB. chứng minh
a) Tam giác ADB=tam giác BMA
b) Ba điểm M,I,D thẳng hàng
c) AM//BD
Cho tam giác ABC có AB = AC. M là trung điểm BC.
a) Chứng minh: tam giác MAB = tam giác MAC
b) Chừng minh AM là tia phân giác của góc BAC và AM vuông góc BC
c) Lấy điểm E trên AB, điểm F trên AC sao cho AE = AF. Gọi G là trung điểm EF. Chứng minh: 3 điểm A; G; M thẳng hàng.
d) Chứng minh: EF // BC
e) Trên tia EF lấy K sao cho EK = BC. Gọi I là giao điểm của BC và EK. Chứng minh: I vừa là trung điểm của EC vừa là trung điểm của BK
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
B)vi goc BAM =90 độ
MAC=90 độ
=>AM vuông góc voi BC
a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)
b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC
c) Tam giác EBC và FCB có
EB = FC
\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)
BC chung
=> tam giác EBC = tam giác FCB (c.g.c)
d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)
=> tam giác IBC cân tại I => IB = IC
Xét tam giác AIB và AIC có
AI chung
AB =AC (gt)
IB=IC
=> tam giác AIB = AIC (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)
=> AI là tia phân giác của \(\widehat{BAC}\) (1)
Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac
=> AM là tia pgiac của \(\widehat{BAC}\) (2)
từ 1 và 2 => A,I,M thẳng hàng
e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)
Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)
Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )
b. ta có : AB=AC ; BM=CM
=> AM vuông góc BC
Cho tam giác ABC có BC=9cm. Trên tia AB lấy M sao cho AB=BM. Trên tia AC lấy N sao cho AC=CN.
a)Chứng minh: BC là đường trung bình của tam giác AMN. Tính MN.
b) Kẻ AI là trung tuyến của tam giác ABC. Trên tia AI lấy J sao cho I là trung điểm AJ. Chứng minh: IB//MJ và M,J,N thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh rằng: AB = DC và AB // DC.
b) Chứng minh rằng:
Tam giác ABC=tam giác CDA
từ đó suy ra Am=BC trên 2
c) Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Chứng minh rằng:
BE// AM.
d) Tìm điều kiện của tam giác ABC để AC bằng BC trên 2
e) Gọi O là trung điểm của AB. Chứng minh rằng: Ba điểm E, O, D thẳng
hàng.
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Cho tam giác ABC cân tại A. Trên tia đối của BA lấy M,trên tia đối của CA lấy N sao cho MB=NC.1)Chứng minh tam giác ABC cân và MN // BC 2)Gọi I là trung điểm của BC,E là giao điểm của CM và BN.Chứng minh A;I;E thẳng hàng
1) dùng 2 góc đồng vị (góc B với M hoặc góc C với N)
2) cm 2 góc BAE và CAE bằng nhau
suy ra tam giác BAE = tam giác CAE
suy ra AB = AC; EB = EC
nên AE là đường trung trực của BC
suy ra AE vuông góc với BC
cm AI vuông gõ với BC suy ra A,I, E thẳng hàng
cho tam giác ABC có AB = Ac. trên OB lấy điểm M trên tia Ac lấy điểm N sao cho AN =AM, gọi I là giao điểm NB và NC
a) chứng minh tam giác ANB = tam giác ANC
b) chứng minh MN // Bc
c) gọi D là trung điểm của BC. chứng minh A,I,D thẳng hàng
a: Xét ΔANB và ΔAMC có
AN=AM
góc A chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: góc ABI+góc IBC=góc ABC
góc ACI+góc ICB=góc ACB
mà góc ABI=góc ACI;góc ABC=góc ACB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
=>I nằm trên trung trực của BC
mà AD là trung trực của BC
nên A,I,D thẳng hàng
Cho tam giác abc gọi M là trung điểm của cạnh BC. Qua điểm A kẻ đường thẳng d song song với BC. Trên đường thẳng d lấy điểm D sao cho AD=BM. Gọi I là trung điểm của AM. Chứng minh
Tam giác ABD=BAM
AM//BD
Ba điểm D,I,C thẳng hàng