Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Oanh
Xem chi tiết
Hắc Hường
30 tháng 7 2018 lúc 22:49

Giải:

\(A=\sin10+\sin40-\cos50-\cos80\)

\(\Leftrightarrow A=\cos80+\cos50-\cos50-\cos80\)

\(\Leftrightarrow A=0\)

Vậy ...

\(B=\cos15+\cos25-\sin65-\sin75\)

\(\Leftrightarrow B=\sin75+\sin65-\sin65-\sin75\)

\(\Leftrightarrow B=0\)

Vậy ...

\(C=\dfrac{\tan27.\tan63}{\cot63.\cot27}\)

\(\Leftrightarrow C=\dfrac{\tan27.\tan63}{\tan27.\tan63}\)

\(\Leftrightarrow C=1\)

Vậy ...

\(D=\dfrac{\cot20.\cot45.\cot70}{\tan20.\tan45.\tan70}\)

\(\Leftrightarrow D=\dfrac{\cot20.\cot45.\cot70}{\cot70.\cot45.\cot20}\)

\(\Leftrightarrow D=1\)

Vậy ...

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 11:26

a) \(\sin220^0< \sin10^0< \sin40^0< \sin90^0\)

b) \(\cos138^0< \cos90^0< \cos15^0< \cos0^0\)

Sách Giáo Khoa
Xem chi tiết
Doraemon
30 tháng 3 2017 lúc 11:40

Chú ý rằng: sin450 = cos450, sin400 = cos500, sin500 = cos400

Ta được:

\(\dfrac{\cos50^0-\cos45^0+\cos50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\times3\left(\dfrac{\sqrt{3}}{3}+\tan15^0\right)}{3\left(1-\dfrac{\sqrt{3}}{3}\tan15^0\right)}\)

\(=1-6\left(\dfrac{\tan30^0+\tan15^0}{1-\tan30^0\times\tan15^0}\right)\)

\(=1-6\tan45^0=-5\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
10 tháng 5 2017 lúc 10:21

a) \(sin20^o+2sin40^o-sin100^o=sin20^o-sin100^o+2sin40^o\)
\(=2cos60^osin\left(-40^o\right)+2sin40^o\)\(=-2cos60^osin40^o+2sin40^o\)
\(=2sin40^o\left(-cos60^o+1\right)=2sin40^o.\left(-\dfrac{1}{2}+1\right)=sin40^o\)(đpcm).

Bùi Thị Vân
10 tháng 5 2017 lúc 10:28

b) \(\dfrac{sin\left(45^o+\alpha\right)-cos\left(45^o+\alpha\right)}{sin\left(45^o+\alpha\right)+cos\left(45^o+\alpha\right)}\)
\(=\dfrac{sin\left(45^o+\alpha\right)-sin\left(45^o-\alpha\right)}{sin\left(45^o+\alpha\right)+sin\left(45^o-\alpha\right)}=\dfrac{2cos45^o.sin\alpha}{2sin45^o.cos\alpha}\)
\(=tan\alpha\) (Đpcm).

Bùi Thị Vân
10 tháng 5 2017 lúc 11:01

d) \(sin200^osin310^o+cos340^ocos50^o\)
\(=sin20^o.sin50^o+cos20^ocos50^o\)
\(=cos\left(50^o-20^o\right)=cos30^o\).

Hello It me
Xem chi tiết
Nguyễn Ngọc Huy Toàn
20 tháng 5 2022 lúc 13:24

Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của 

\(P=\dfrac{1}{x}+\dfrac{1}{y}\)

Giải:

\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)

--> P nhỏ nhất khi \(xy\) lớn nhất

Ta có:

\(x^2+y^2\ge2xy\) ( BĐT AM-GM )

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)

Vậy \(Min_P=8\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)

 

 

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
11 tháng 5 2017 lúc 14:20

a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).

Bùi Thị Vân
11 tháng 5 2017 lúc 14:34

\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).

Bùi Thị Vân
11 tháng 5 2017 lúc 14:50

c) \(\dfrac{cos\left(-288^o\right)cot72^o}{tan\left(-162^o\right)sin108^o}-tan18^o\)
\(=\dfrac{cos72^ocot72^o}{tan18^o.sin72^o}-tan18^o\)
\(=\dfrac{cos^272^o.cos18^o}{sin72^osin18^o.sin72^o}-tan18^o\)
\(=cot^272^ocot18^o-tan18^o\)
\(=tan^218^ocot18^o-tan18^o\)
\(=tan18^o-tan18^o=0\).

Egoo
Xem chi tiết
gãi hộ cái đít
17 tháng 4 2021 lúc 22:43

Ta có:

\(A=\dfrac{\cos10^0-\sqrt{3}\sin10^0}{\sin10^0\cos10^0}\)

\(=\dfrac{4\left(\dfrac{1}{2}cos10^0-\dfrac{\sqrt{3}}{2}sin10^0\right)}{2sin10^0cos10^0}=\dfrac{4\left(s\text{in3}0^0cos10^0-cos30^0s\text{in}10^0\right)}{sin20^0}=\dfrac{4sin\left(30^0-10^0\right)}{s\text{in2}0^0}=4\)

Nhã Phương
30 tháng 7 2020 lúc 8:21

A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)

A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)

A=\(\frac{1}{2}\)(-sin10+sin10)+1

A= 1

Nguyễn Ngọc Huyền Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 12:38

Bài 1: 

b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

Bài 2:

\(\sqrt{ab}< =\dfrac{a+b}{2}\)

\(\Leftrightarrow a+b>=2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)