Cho tam giác ABC. Tìm tập các điểm M sao cho
a) MB2+MC2-MA2 =0
b) MB2+MC2- 2MA2=0
Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho MA2 + MB2= MC2
Gọi M(x, y)
⇒ MA2 = (x – 1)2 + (y – 2)2
MB2 = (x + 3)2 + (y – 1)2
MC2 = (x – 4)2 + (y + 2)2
MA2 + MB2 = MC2
⇔ (x – 1)2 + (y – 2)2 + (x + 3)2 + (y – 1)2 = (x – 4)2 + (y + 2)2
⇔ [(x – 1)2 + (x + 3)2 – (x – 4)2] + [(y – 2)2 + (y – 1)2 – (y + 2)2] = 0
⇔ (x2 – 2x +1 +x2 + 6x + 9 – x2 + 8x -16) + (y2 – 4y + 4 + y2 – 2y + 1 – y2 – 4y – 4) = 0
⇔ (x2 + 12x – 6) + (y2 – 10y + 1) = 0
⇔ (x2 + 12x – 6 +42) + (y2 – 10y + 1+ 24) = 42 +24
⇔ (x2 + 12x + 36) + (y2 – 10y + 25) = 66
⇔ (x + 6)2 + (y – 5)2 = 66.
Vậy tập hợp các điểm M là đường tròn tâm I(–6; 5), bán kính R = √66.
Cho tam giác ABC có AB = 22, BC = 19, CA = 13. Tìm tập hợp điểm M sao cho:
a) MA2 + MB2 + MC2 = k2b) AM2 + CM2 = BM2c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của BM nếu AM2 + CM2 = BM2
a, Gọi I là trọng tâm của ΔABC
⇒ \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
MA2 + MB2 + MC2 = k2
⇔ 3MI2 + 2\(\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+AB^2+AC^2+BC^2\) = k2
⇔ 3MI2 = k2 - 1014
⇔ MI = \(\sqrt{\dfrac{k-1014}{3}}\) = const
Vậy M thuộc \(\left(I;\sqrt{\dfrac{k-1014}{3}}\right)\)
Cho hình vuông ABCD cạnh a . Tìm tập hợp M sao cho :
2 MA2 + MB2 = MC2 + MD2
Cho tam giác đều ABC cạnh a.
a, Cho M là một điểm trên đường tròn ngoại tiếp tam giác ABC. Tính MA2 + MB2 + MC2 theo a.
b, Cho đường thẳng d tùy ý, tìm điểm N trên đường thẳng d sao cho NA2 + NB2 + NC2 nhỏ nhất.
a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.
Lại có:
+ O là trọng tâm tam giác nên
+ Bán kính đường tròn ngoại tiếp tam giác:
Ta có: NA2 + NB2 + NC2 ngắn nhất
⇔ NO2 ngắn nhất vì R không đổi
⇔ NO ngắn nhất
⇔ N là hình chiếu của O trên d.
Cho tam giác ABC vuông cân tại B và M thuộc miền trong tam giác sao cho góc BMC =135 độ. Chứng minh MA2=2.MB2+MC2
Trong không gian cho tam giác ABC đều cạnh bằng 2 cố định, M là điểm thỏa mãn điều kiện M A 2 + M B 2 + M C 2 = 12 Khẳng định nào sau đây đúng ?
A. Tập hợp các điểm M là một mặt cầu có bán kính R = 7
B. Tập hợp các điểm M là một mặt cầu có bán kính R = 2 7 3
C. Tập hợp các điểm M là một mặt cầu có bán kính R = 7 2
D. Tập hợp các điểm M là một mặt cầu có bán kính R = 2 7 9
Đáp án C.
Gắn hệ trục tọa độ Oxyz, với O(0;0;0) là trung điểm của AB => OC= 3
Khi đó
⇒ x 2 + ( y + 1 ) 2 + z 2 + x 2 + ( y - 1 ) 2 + z 2 + 2 ( x - 3 ) 2 + 2 y 2 + 2 z 2 = 12
Vậy tập hợp các điểm M là một mặt cầu có bán kính
R
=
7
2
Trong không gian với hệ tọa độ Oxyz, cho A(-3;0;0),B(0;0;3),C(0;-3;0). Điểm M(a,b,c) nằm trên mặt phẳng Oxy sao cho M A 2 + M B 2 - M C 2 nhỏ nhất. Tính a 2 + b 2 - c 2
A. 18
B. 0
C. 9
D. – 9
Chọn A
Phương pháp:
+) Xác định điểm I thỏa mãn I A → + I B → - I C → = 0 →
+) Khi đó
nhỏ nhất khi và chỉ khi MI ngắn nhất ⇔ M là hình chiếu vuông góc của I lên (Oxy) .
Cách giải:
Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:
M A 2 + M B 2 + M C 2 + M D 2 đạt giá trị cực tiểu.
Gọi E, F lần lượt là trung điểm của AB và CD. Ta có:
Cộng (1) và (2) ta có:
Gọi J là trung điểm của EF, ta có:
Khi đó:
Vậy M A 2 + M B 2 + M C 2 + M D 2 đạt giá trị nhỏ nhất khi M ≡ J.
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;0;1), B(1;2;1), C(4;1;-2) và mặt phẳng P : x + y + z = 0 . Tìm trên (P) điểm M sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Khi đó M có tọa độ:
A. M(1;1;-1)
B. M(1;1;1)
C. M(1;2;-1)
D. M(1;0;-1)
Đáp án D.
Gọi G là trọng tâm của tam giác ABC, ta có G(2;1;0)
Ta có:
Từ hệ thức trên ta suy ra: M A 2 + M B 2 + M C 2 đạt GTNN
⇔ MG đạt GTNN ⇔ M là hình chiếu vuông góc của G trên (P)
Gọi (d) là đường thẳng qua G và vuông góc với (P) thì (d) có phương trình tham số là
Tọa độ điểm M là nghiệm của hệ phương trình:
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;0;1), B(1;2;1), C(4;1;-2) và mặt phẳng (P):x+y+z=0. Tìm trên (P) điểm M sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Khi đó M có tọa độ:
A. M(1;1;-1)
B. M(1;1;1)
C. M(1;2;-1)
D. M(1;0;-1)