Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 13:48

a: m>1

 

Nguyên Khôi
24 tháng 10 2021 lúc 13:48

a. m>1

nguyễn trần an bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:38

a: Để hàm số đồng biến thì m-3>0

hay m>3

b: Thay x=-1 và y=1 vào (d), ta được:

-m+3+m-2=1

hay 1=1(đúng)

Lê Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 6 2022 lúc 23:05

a: Để hàm số đồng biến thì m-1>0

hay m>1

Để hàm số nghịch biến thì m-1<0

hay m<1

b: f(1)=2

nên \(m-1+2m-3=2\)

=>3m-4=2

hay m=2

Do đó: \(f\left(x\right)=x+1\)

f(2)=3

c: f(3)=0 nên 3(m-1)+2m-3=0

=>3m-3+2m-3=0

=>5m=6

hay m=6/5

Vậy: \(f\left(x\right)=\dfrac{1}{5}x-\dfrac{3}{5}\)

=>f(x) đồng biến

Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Cô nàng Thiên Bình dễ th...
30 tháng 6 2018 lúc 15:41

 Ta có: y′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3) thì y′<0 với mọi x∈(2;3).

Tức là khoảng (2;3) nằm trong khoảng hai nghiệm phương trình y′=0 (Do y′=x2−2(m+1)x+m2+2m có hệ số của x2 dương).

{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

Hoàng hôn  ( Cool Team )
27 tháng 9 2019 lúc 21:18

Ta có: y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3)(2;3) thì y′<0y′<0 với mọi x∈(2;3).x∈(2;3).

Tức là khoảng (2;3)(2;3) nằm trong khoảng hai nghiệm phương trình y′=0y′=0 (Do y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m có hệ số của x2x2 dương).

{Δ′>0x1≤2<3≤x2⇔⎧⎪ ⎪⎨⎪ ⎪⎩(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔⎧⎪⎨⎪⎩1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

⇔{m2+2m−2.2.(m+1)+4≤0m2+2m−3.2.(m+1)+9≤0⇔{m2−2m≤0m2−4m+3≤0⇔{0≤m≤21≤m≤3⇔1≤m≤2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2018 lúc 4:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2017 lúc 11:31

Nguyễn Trung Dũng
Xem chi tiết
Akai Haruma
2 tháng 12 2023 lúc 23:53

Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$

Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$

$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$

$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$

$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$

$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$ 

Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.

b.

Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:

$(m^2-3m+2)(x_1+x_2)+(m-1)>0$

Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:

$m^2-3m+2=0$ và $m-1>0$

$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$

$\Leftrightarrow m=2$

 

Xem chi tiết
Nguyễn Linh Chi
9 tháng 10 2019 lúc 23:44

Mọi \(x_1;x_2\in\left(1;2\right)\)

G/s: \(x_1< x_2\)

Xét \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\frac{\left(-x_1^2+\left(m-1\right)x_1+2\right)-\left(-x_2^2+\left(m-1\right)x_2+2\right)}{x_1-x_2}\)

\(=\frac{-\left(x_1^2-x_2^2\right)+\left(m-1\right)\left(x_1-x_2\right)}{\left(x_1-x_2\right)}\)

\(=-\left(x_1+x_2\right)+m-1\)

Để hàm số nghịch biến thì \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}< 0\Leftrightarrow m+1< x_1+x_2< 2+2\)=> \(m< 3\)