Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
O=C=O
Xem chi tiết
Hồng Phúc
2 tháng 1 2021 lúc 16:46

ĐK; \(-1\le x\le3\)

Đặt \(\sqrt{-x^2+2x+3}=t\left(0\le t\le2\right)\)

\(pt\Leftrightarrow m+1=-x^2+2x+3+4\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow m+1=f\left(t\right)=t^2+4t\)

\(f\left(0\right)=0;f\left(2\right)=12\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m+1\le maxf\left(t\right)\)

\(\Leftrightarrow0\le m+1\le12\)

\(\Leftrightarrow-1\le m\le11\)

O=C=O
Xem chi tiết
Hồng Phúc
3 tháng 1 2021 lúc 22:04

ĐK: \(-\dfrac{1}{2}\le x\le3\)

\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)

Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)

\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)

\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)

Yêu cầu bài toán thỏa mãn khi:

\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)

\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)

Di Ti
Xem chi tiết
Nguyễn Nguyễn
10 tháng 12 2020 lúc 21:50

ĐKXĐ: \(\dfrac{-1}{2}\le x\le3\)\(\Rightarrow x\in\left[\dfrac{-1}{2};3\right]\)

ta có pt\(\Leftrightarrow\)\(\sqrt{-\left(2x^2-5x-3\right)}=2x^2-5x-3+6+m\)

Đặt \(\sqrt{-\left(2x^2-5x-3\right)}=t\ge0 \)

\(\Rightarrow-t^2=\left(2x^2-5x-3\right)\)

khi đó pt trở thành: \(t=-t^2+6+m\Leftrightarrow t^2+t-6-m=0\left(1\right)\)

để pt đã cho có nghiệm thì pt (1) có nghiệm

khi đó \(\Delta'=m+15\ge0\Leftrightarrow m\ge15\)

Vậy ....

 

Dạ Vũ
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
NGUYỄN THÀNH NAM
Xem chi tiết
Nguyễn Ngọc Lộc
10 tháng 5 2021 lúc 11:25

TH1 : \(x\ge m\)

\(PT\Leftrightarrow2x^2+2\left(m+1\right)x-m^2-1=x^2-2mx+m^2\)

\(\Leftrightarrow x^2+2\left(2m+1\right)x-2m^2-1=0\)

Có \(\Delta^,=b^{,2}-ac=4m^2+4m+1+2m^2+1=6m^2+4m+2\)

- Thấy \(\Delta^,\ge\dfrac{4}{3}>0\)

- Nên để PT có nghiệm thì \(x_1>x_2>m\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(m\right)>0\\-\left(2m+1\right)>m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2\left(2m+1\right)m-2m^2-1>0\\-\left(2m+1\right)-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m^2+2m-1>0\\3m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>\dfrac{1}{3}\end{matrix}\right.\\m< -\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow m< -1\)

TH2 : \(\left\{{}\begin{matrix}x< m\\2x^2+2\left(m+1\right)x-m^2-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< m\\\Delta^,=3m^2+2m+3\le0\end{matrix}\right.\)

<=> Loại .

Vậy để .... <=> m < - 1 

 

 

oooloo
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 22:48

\(\Leftrightarrow x^2-2x-m+\dfrac{2\left(x^2-2x-m\right)\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}=0\)

\(\Leftrightarrow\left(x^2-2x-m\right)\left(1+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}\right)=0\)

\(\Leftrightarrow x^2-2x-m=0\)

Hán Bình Nguyên
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 23:29

\(\Leftrightarrow\sqrt{2x^2-2\left(m+4\right)x+5m+10}=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\2x^2-2\left(m+4\right)x+5m+10=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-2\left(m+1\right)x+5m+1=0\left(1\right)\end{matrix}\right.\)

Pt đã cho có nghiệm khi (1) có ít nhất 1 nghiệm thỏa mãn \(x\ge3\)

- Để (1) có nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(5m+1\right)\ge0\Leftrightarrow m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\) (1)

- Để 2 nghiệm của (1) thỏa mãn \(x_1\le x_2< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)>0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9>0\\x_1+x_2< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5m+1-6\left(m+1\right)+9>0\\2\left(m+1\right)< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m< 2\end{matrix}\right.\) \(\Rightarrow m< 2\)

\(\Rightarrow\) Để pt có ít nhất 1 nghiệm thỏa mãn \(x\ge3\) thì \(m\ge2\) (2)

Kết hợp (1); (2) \(\Rightarrow m\ge3\)

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:53

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:55

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined