§3. Hàm số bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hán Bình Nguyên

Tìm m để phương trình có nghiệm

\(\sqrt{2x^2-2\left(m+4\right)x+5m+10}-x+3=0\)

Nguyễn Việt Lâm
28 tháng 4 2021 lúc 23:29

\(\Leftrightarrow\sqrt{2x^2-2\left(m+4\right)x+5m+10}=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\2x^2-2\left(m+4\right)x+5m+10=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-2\left(m+1\right)x+5m+1=0\left(1\right)\end{matrix}\right.\)

Pt đã cho có nghiệm khi (1) có ít nhất 1 nghiệm thỏa mãn \(x\ge3\)

- Để (1) có nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(5m+1\right)\ge0\Leftrightarrow m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\) (1)

- Để 2 nghiệm của (1) thỏa mãn \(x_1\le x_2< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)>0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9>0\\x_1+x_2< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5m+1-6\left(m+1\right)+9>0\\2\left(m+1\right)< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m< 2\end{matrix}\right.\) \(\Rightarrow m< 2\)

\(\Rightarrow\) Để pt có ít nhất 1 nghiệm thỏa mãn \(x\ge3\) thì \(m\ge2\) (2)

Kết hợp (1); (2) \(\Rightarrow m\ge3\)


Các câu hỏi tương tự
autumn
Xem chi tiết
Hán Bình Nguyên
Xem chi tiết
oooloo
Xem chi tiết
Lương Đại
Xem chi tiết
Hung Luong
Xem chi tiết
Lương Nguyễn Anh Đức
Xem chi tiết
Mai Anh Vũ
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết
Đan Linh
Xem chi tiết