Ta có : \(x^2-2x+m=0\)
Xét \(\Delta'=1-m\) . Đặt \(P=m\) , S = 2
Để pt có hai nghiệm dương phân biệt thì
\(\begin{cases}\Delta'=1-m>0\\S=2>0\\P=m>0\end{cases}\) \(\Leftrightarrow0< m< 1\)
Vậy để pt có hai nghiệm dương phân biệt thì \(0< m< 1\)
Ta có : \(x^2-2x+m=0\)
Xét \(\Delta'=1-m\) . Đặt \(P=m\) , S = 2
Để pt có hai nghiệm dương phân biệt thì
\(\begin{cases}\Delta'=1-m>0\\S=2>0\\P=m>0\end{cases}\) \(\Leftrightarrow0< m< 1\)
Vậy để pt có hai nghiệm dương phân biệt thì \(0< m< 1\)
Cho phương trình: x2-(m-2)x+m(m-3)=0. Tìm các giá trị m để phương trình có 2 nghiệm phân biệt.
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
Tìm m để phương trình có nghiệm
\(\sqrt{2x^2-2\left(m+4\right)x+5m+10}-x+3=0\)
Cho hàm số y= f(x)= ax^2 + bx+c có đồ thị như hình vẽ bên.( dưới bình luận) Có bao nhiêu giá trị nguyên m để phương trình f^2(|x|)+(m- 2019) f (|x|)+m– 2020 =0 có 6 nghiệm phân biệt
Cho phương trình \(x^2-2\left(m-2\right)x+m-3=0\). Định m
a, Phương trình có 2 nghiệm phân biệt trên \(\left(1;+\infty\right)\)
b, có nghiệm trên \(\left(1;+\infty\right)\)
c, có đúng 1 nghiệm trên \(\left(1;+\infty\right)\)
. Dùng phương pháp bảng biến thiên .
Giúp với ạ, mình cảm ơn nhiều.
Tìm m để phương trình \(x^2+2x+m\sqrt{3-2x-x^2}=m^2\) có nghiệm
Với giá trị nào của m thì phương trình đã cho có 4 nghiệm
Đề: tìm m để mỗi phương trình sau có nghiệm:
a) (m -1)x2 - 2(m +3)x - m + 2 = 0
b) (m -1)x2 + 3mx +1 = 0 có 2 nghiệm dương phân biệt
c) mx2 - (2m + 1)x + m + 3 = 0 có đúng 4 nghiệm dương
Mong mọi người giải giúp ạ
Tìm m để phương trình sau có nghiệm:
\(\sqrt{x^2}-2x+2=2m+1-2x^2+4x\)
tìm m để phương trình x2\(^{ }\)-4x+m-1=0 có hai nghiệm x1,x2 thỏa mãn x1^3+x2^3-40=0