a) Vẽ đồ thị hàm số y = x2 + 2x - 8
(công cụ vẽ (p) mình chưa thạo nên không vẽ được, chỉ có thể mô tả thôi)
Từ đồ thị của hàm số trên, suy ra đồ thị y = |x2 +2x - 8| gồm phần đồ thị y = x2 + 2x - 8 nằm trên Ox và phần dưới Ox lấy đối xứng qua Ox.
Số nghiệm của phương trình cần tìm là số giao điểm của 2 đồ thị y = |x2 +2x - 8| và y = m.
+ Nếu m < 0 thì PT vô nghiệm
+ Nếu m = 0 thì PT có 2 nghiệm
+ Nếu 0 < m < 9 thì PT có 4 nghiệm
+ Nếu m = 9 thì PT có 3 nghiệm
+ Nếu m > 9 thì PT có 2 nghiệm
b) Có - x2 + 3|x| - m + 1 = 0 ⇔ - x2 + 3|x| + 1 = m
Vẽ đồ thị hàm số y = - x2 + 3x + 1
Từ đồ thị trên, suy ra đồ thị của hàm số y = - x2 + 3|x| + 1 gồm phần đồ thị bên phải Oy và phần bên trái lấy đối xứng với bên phải qua Oy.
(TT a)
c) x2 + 4|x-2| + 1 - m = 0 ⇔ x2 + 4|x-2| + 1 = m
(TT b)
d) x|x-3| + x - 2 + m = 0 ⇔ x|x-3| + x - 2 = - m
Đồ thị y = x|x-3| + x - 2 = \(\left\{{}\begin{matrix}x\left(x-3\right)+x-2=x^2-2x-2\left(x\ge3\right)\\x\left(3-x\right)+x-2=-x^2+4x-2\left(x< 3\right)\end{matrix}\right.\)
Vẽ 2 đồ thị và biện luận như câu a