Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn an bình
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 9 2020 lúc 9:54

Ta có: \(x^2-25y^2=0\)

\(\Leftrightarrow\left(x-5y\right)\left(x+5y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5y\\x=-5y\end{cases}}\)

+ Nếu: \(x=5y\Leftrightarrow10y-7y=3\)

\(\Leftrightarrow3y=3\Rightarrow y=1\Rightarrow x=5\)

+ Nếu: \(x=-5y\Leftrightarrow-10y-7y=3\)

\(\Leftrightarrow-17y=3\Rightarrow y=-\frac{3}{17}\Rightarrow x=\frac{15}{17}\)

Vậy ta có 2 cặp số (x;y) thỏa mãn: \(\left(5;1\right),\left(\frac{15}{17};-\frac{3}{17}\right)\)

Khách vãng lai đã xóa
Bùi Hoàng	Dũng
Xem chi tiết
Lưu Thiên Phúc
Xem chi tiết
Nguyễn Huy Tú
20 tháng 11 2020 lúc 18:50

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

Khách vãng lai đã xóa
Mai_Anh_Thư123
Xem chi tiết
Phạm Thùy Linh ( team ❤️...
Xem chi tiết
Phạm Nguyễn Gia Phú
4 tháng 10 lúc 20:19

1,7y

Vũ PhươngThảo
Xem chi tiết
Holmes Sherlock
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

789 456
25 tháng 4 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)

Mạc Anh
Xem chi tiết
Kiều Vũ Linh
5 tháng 12 2023 lúc 10:14

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

Đình Thị Thùy Dung
Xem chi tiết
Hoang Quoc Anh
19 tháng 9 2015 lúc 22:06

minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z

+) 10x=15y=21z   ( Quy dong)

+)10x/210 = 15y/210 = 21z/210       ( BC)

+) x/21 = y/14 = z/10  ( Rut gon)

+) 3x/63 = 7y/98 =  5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2

+ x/21 = 2 => ............  phan nay minh chua xong neu xong thi minh pm not cho

Trang Đàm
6 tháng 8 2016 lúc 16:34

2x=3y,5y=7z và 3x-7y+5z=30

Hiếu
19 tháng 10 2016 lúc 13:02

cho mình