Số phần tử của tập hợp
\(A=\left\{x\in R|\left(x^2+x\right)^2=x^2-2x+1\right\}\) là bao nhiêu
Số phần tử của tập hợp
\(A=\left\{x\in R|\left(2x^2+x-4\right)^2=4x^2-4x-1\right\}\) là bao nhiêu
Vế phải là \(4x^2-4x-1\) hay \(4x^2-4x+1\) bạn?
1/cho tập hợp B= \(\left\{x\in R|\left(9-x^2\right)\left(x^2-3x+2\right)=0\right\}\)tìm các phần tử
2/ tập hợp A= \(\left\{1;2;3;4;5;6\right\}\) có bao nhiêu tập hợp con gồm 2 phần tử ?
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
1, Cho tập hợp sau :
\(A=\left\{x\in N\left|x\le7\right|\right\}\)
Hỏi : A có bao nhiêu phần tử, đó là các phần tử nào và nêu 3 số \(\notin\)A
2, Cho tập hợp B
\(B=\left\{x\in N\left|1< x< 5\right|\right\}\)
Hãy viết ra các tập hợp là tập hợp con của tập hợp B mà mỗi tập hợp có 3 phần tử
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
Cho tập hợp A = \(\left\{x\in Q:\left(2x^2-x\right)\left(x^3-2x+1\right)=0\right\}\)
Hãy liệt kê tất cả các phần tử của tập hợp A, chỉ ra các tập hợp con gồm 2 phần tử của A
A={0;1/2}
Tập con có hai phần tử của A là {0;1/2}
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x^2-5x+3\right)\left(x^2-4x+3\right)=0\) }
b) B = { \(x\in R\) | \(\left(x^2-10x+21\right)\left(x^3-x\right)=0\) }
c) C = { \(x\in R\) | \(\left(6x^2-7x+1\right)\left(x^2-5x+6\right)\) = 0 }
d) D = { \(x\in Z\) | \(2x^2-5x+3=0\) }
e) E = { \(x\in N\) | \(\left\{{}\begin{matrix}x+3< 4+2x\\5x-3< 4x-1\end{matrix}\right.\) }
f) F = { \(x\in Z\) | \(\left|x+2\right|\le1\) }
g) G = { \(x\in N\) | x < 5 }
h) H = { \(x\in R\) | \(x^2+x+3=0\) }
`a)(2x^2-5x+3)(x^2-4x+3)=0`
`<=>[(2x^2-5x+3=0),(x^2-4x+3=0):}<=>[(x=3/2),(x=1),(x=3):}`
`=>A={3/2;1;3}`
`b)(x^2-10x+21)(x^3-x)=0`
`<=>[(x^2-10x+21=0),(x^3-x=0):}<=>[(x=7),(x=3),(x=0),(x=+-1):}`
`=>B={0;+-1;3;7}`
`c)(6x^2-7x+1)(x^2-5x+6)=0`
`<=>[(6x^2-7x+1=0),(x^2-5x+6=0):}<=>[(x=1),(x=1/6),(x=2),(x=3):}`
`=>C={1;1/6;2;3}`
`d)2x^2-5x+3=0<=>[(x=1),(x=3/2):}` Mà `x in Z`
`=>D={1}`
`e){(x+3 < 4+2x),(5x-3 < 4x-1):}<=>{(x > -1),(x < 2):}<=>-1 < x < 2`
Mà `x in N`
`=>E={0;1}`
`f)|x+2| <= 1<=>-1 <= x+2 <= 1<=>-3 <= x <= -1`
Mà `x in Z`
`=>F={-3;-2;-1}`
`g)x < 5` Mà `x in N`
`=>G={0;1;2;3;4}`
`h)x^2+x+3=0` (Vô nghiệm)
`=>H=\emptyset`.
Cho \(A = \left\{ {x \in \mathbb{Z}|\;x < 4} \right\},\) \( \,B = \left\{ {x \in \mathbb{Z}|\;\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0} \right\}\)
a) Liệt kê các phần tử của hai tập hợp A và B.
b) Hãy xác định các tập hợp \(A \cap B,A \cup B\) và \(A\,{\rm{\backslash }}\,B\)
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
Cho 2 tập hợp, A = {\(x\in \mathbb Z\) | \(\left(2x^2-x-3\right)\left(x^2-4\right)=0\)} , B = {\(x\in \mathbb N\) | \(x\le4\)}.
Viết tập hợp bằng cạc liệt kê các phần tử.
(Bấm máy tính tìm nghiệm)
\(A=\left\{-2;-1;2\right\}\)
\(B=\left\{0;1;2;3\right\}\)
Bài 1. (2 điểm)
a) Liệt kê các phần tử của tập hợp $A=\left\{ x\in \mathbb{Z} \, \Big| \, 2{{x}^{2}}+3x+1=0 \right\}$.
b) Cho hai tập hợp $A=\left\{ x\in \mathbb{R} \, \Big| \, |x|>4 \right\}$ và $B=\left\{ x\in \mathbb{R} \, \Big| \, -5\le x-1<5 \right\}$. Xác định tập $X=B\backslash A$.
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn