Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♥ Aoko ♥
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 18:34

\(u_{n+1}=\dfrac{2u_n}{u_n+4}\Leftrightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{2}+\dfrac{2}{u_n}\)

Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=2v_n+\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}+\dfrac{1}{2}=2\left(v_n+\dfrac{1}{2}\right)\end{matrix}\right.\)

Đặt \(v_n+\dfrac{1}{2}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}\\x_{n+1}=2x_n\end{matrix}\right.\)

\(\Rightarrow x_n\) là CSN với công bội 2 \(\Rightarrow x_n=\dfrac{3}{2}.2^{n-1}=3.2^{n-2}\)

\(\Leftrightarrow v_n=x_n-\dfrac{1}{2}=3.2^{n-2}-\dfrac{1}{2}\)

\(\Rightarrow u_n=\dfrac{1}{v_n}=\dfrac{1}{3.2^{n-2}-\dfrac{1}{2}}=\dfrac{2}{3.2^{n-1}-1}\)

camcon
14 tháng 11 2023 lúc 11:47

Cho \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=2u_n+6\end{matrix}\right.\)

Tìm số hạng tổng quát của dãy số sau

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2021 lúc 16:15

\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)

Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)

\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)

\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)

Tuân Wai
Xem chi tiết
Lê Song Phương
22 tháng 10 2023 lúc 21:58

Xét hàm số \(f\left(x\right)=\dfrac{x^{2022}+3x+16}{x^{2021}-x+11}\), ta cần cm

 \(f\left(x\right)\ge x\) (*)

Thật vậy, (*) \(\Leftrightarrow x^{2022}+3x+16\ge x^{2022}-x^2+11x\)

\(\Leftrightarrow x^2-8x+16\ge0\)

 \(\Leftrightarrow\left(x-4\right)^2\ge0\) (luôn đúng)

Vậy \(f\left(x\right)\ge x,\forall x\)

\(\Rightarrow u_{n+1}=f\left(u_n\right)\ge u_n\) nên \(\left(u_n\right)\) là dãy tăng.

I love English
Xem chi tiết
Minh Nhân
25 tháng 1 2021 lúc 21:54

\(u_2=2u_1+1=2\cdot1+1=3\)

\(S=u_1+u_2=1+3=4\)

xin gam
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2022 lúc 21:59

\(u_{n+1}=\dfrac{n\left(u_n+2\right)+n^2+1}{n+1}\)

\(\Rightarrow\left(n+1\right)u_{n+1}=nu_n+n^2+2n+1\)

\(\Rightarrow\left(n+1\right)u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

Đặt \(v_n=u.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{6}=0\\v_{n+1}=v_n=...=v_1=0\end{matrix}\right.\)

\(\Rightarrow n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n=0\)

\(\Rightarrow u_n=\dfrac{1}{3}n^2+\dfrac{1}{2}n+\dfrac{1}{6}=\dfrac{\left(n+1\right)\left(2n+1\right)}{6}\)

Lê Nguyên Hưng
Xem chi tiết
Hoàng Tử Hà
5 tháng 3 2021 lúc 22:35

\(\left\{{}\begin{matrix}u_1=a;u_2=b\\u_{n+2}=\dfrac{1}{2}u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=a,u_2=b\\u_{n+2}+\dfrac{1}{2}u_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)

\(v_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\Rightarrow\left\{{}\begin{matrix}v_2=u_2+\dfrac{1}{2}u_1=b+\dfrac{1}{2}a\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=b+\dfrac{1}{2}a\Rightarrow u_{n+1}=b+\dfrac{1}{2}a-\dfrac{1}{2}u_n\)

\(\Leftrightarrow u_{n+1}-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)=-\dfrac{1}{2}\left[u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\right]\)

\(t_n=u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\Rightarrow\left\{{}\begin{matrix}t_1=u_1-\dfrac{1}{3}a-\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\\t_{n+1}=-\dfrac{1}{2}t_n\end{matrix}\right.\)

\(\Rightarrow t_n=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}\Rightarrow u_n=t_n+\dfrac{1}{3}a+\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\)

\(\Rightarrow limun=\lim\limits\left[\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\right]=0\)

 

 

Nguyễn Minh Đăng
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Huy Tú
2 tháng 10 2023 lúc 23:14

1, Ta có \(\left\{{}\begin{matrix}u_1=-1\\u_1.q=3\end{matrix}\right.\Rightarrow\dfrac{1}{q}=-\dfrac{1}{3}\Leftrightarrow q=-3\)

\(S_{10}=-1.\dfrac{1-\left(-3\right)^{10}}{1-\left(-3\right)}=14762\)

2, tương tự 

Big City Boy
Xem chi tiết