Cho số thực a khác 0 và dãy số \(\left(u_n\right)_{\left(n\ge1\right)}\) xác định bởi \(\left\{{}\begin{matrix}u_1=a\\2u_{n+1}=u_n+\dfrac{4\left(n+1\right)}{nu_n}\end{matrix}\right.\)
Tìm lim \(u_n\)
Cho dãy số (\(u_n\)) xác định bởi: \(\left\{{}\begin{matrix}0< u_n< 1\\u_n\left(1-u_{n+1}\right)>\dfrac{1}{4},\forall n\ge1\end{matrix}\right.\)
Chứng minh dãy số (\(u_n\)) có giới hạn hữu hạn khi \(n\rightarrow\infty\)
Tính lim Un , biết :
a) \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2+U_n}\end{matrix}\right.\) , n \(\ge\) 1
b) \(\left\{{}\begin{matrix}U_1=\dfrac{1}{2}\\U_{n+1}=\dfrac{1}{2-U_n}\end{matrix}\right.\) .
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n^{2016}}{2015}+u_n\end{matrix}\right.\). Tính \(s=lim\left(\dfrac{u_1^{2015}}{u_2}+\dfrac{u_2^{2015}}{u_3}+...+\dfrac{u_n^{2015}}{u_{n+1}}\right)\)
\(\left\{{}\begin{matrix}u_1=\dfrac{1}{2};u_2=3\\u_{n+2}=\dfrac{u_{n+1}.u_n+1}{u_{n+1}+u_n}\end{matrix}\right.\). tìm \(\left(u_n\right)\)
cho dãy số (un) được xác định bởi : \(\left\{{}\begin{matrix}u_1=0;u_2=1\\2u_{n+2}=u_{n+1}+u_n,\left(n\ge1\right)\end{matrix}\right.\)
a) Chứng minh rằng:un+1= -1/2 un+1, \(\forall n\ge1\)
b) đặt vn=un-2/3. Tính vn theo n từ đó tìm lim un
Cho dãy số thực \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1\\u_n=\dfrac{-1}{3+u_{n-1}},\forall n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số có giới han hữu hạn khi \(n\rightarrow+\infty\)
\(\left\{{}\begin{matrix}u_1=2\\u_n=\dfrac{u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}}{n\left(n^2-1\right)}\end{matrix}\right.\).tìm \(\left(u_n\right)\)
Cho dãy số \(u_n\)xác định\(\left\{{}\begin{matrix}u_1=4\\u_{n+1}=\dfrac{3nu_n}{n+1}-\dfrac{2n^2+6n+3}{n^2\left(n+1\right)^3}\end{matrix}\right.\) với ∀n\(\ge\)1
Xác định công thức tổng quát của u\(_n\) theo n và tính lim (\(\dfrac{nu_n}{4}\))
GIÚP MÌNH VỚI ,AI LÀM XONG TRƯỚC SẼ ĐƯỢC TICK NHIỀU