Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Hy
Xem chi tiết
PHẠM MINH PHƯƠNG
Xem chi tiết
Lê Song Phương
7 tháng 8 2023 lúc 15:34

  Đặt \(P\left(x\right)=\left(x-a\right)\left(x+a\right)+5=x^2-a^2+5\). Để P(x) phân tích được thành tích các đa thức bậc nhất có hệ số nguyên thì \(P\left(x\right)=\left(x-c\right)\left(x-d\right)\) (vì hệ số cao nhất của P(x) bằng 1). Ta có:

 \(P\left(x\right)=x^2-\left(c+d\right)x+cd\)

 Đồng nhất hệ số, ta thu được \(\left\{{}\begin{matrix}c+d=0\\cd=5-a^2\end{matrix}\right.\). Không mất tính tổng quát, giả sử \(c>0\) \(\Rightarrow\left\{{}\begin{matrix}d=-c\\-c^2=5-a^2\end{matrix}\right.\)

 \(\Rightarrow a^2-c^2=5\) \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=5\). Do \(a-c< a+c\) nên ta xét các trường hợp: 

 TH1: \(\left\{{}\begin{matrix}a-c=1\\a+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2\end{matrix}\right.\) \(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn. 

 TH2: \(\left\{{}\begin{matrix}a-c=-5\\a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\c=2\end{matrix}\right.\)\(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.

 Vậy \(a=\pm3\) thỏa ycbt.

 b) Kĩ thuật tương tự nhé.

 Để Q(x) phân tích được thành tích của 2 đa thức bậc nhất hệ số nguyên thì 

Nguyễn Xuân Thành
7 tháng 8 2023 lúc 14:58

a) Đối với đa thức (x+a)(x-a)+5:
Để phân tích thành tích các đa thức bậc nhất có hệ số nguyên, ta cần giải phương trình (x + a)(x - a) + 5 = 0:
x² - a² + 5 = 0.

Các giá trị của a mà khi thay vào phương trình trên, phương trình có nghiệm nguyên là các giá trị riêng. Nhưng phương trình x² - a² + 5 = 0 là một phương trình bậc hai, do đó ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a)

Ở đây, a = 1, b = 0 và c = -a² + 5.
Thay vào phương trình, ta có:

x = [0 ± √(0 - 4(1)(-a² + 5)) / (2(1)]
= [± √(4a² - 20)] / 2
= ± √(a² - 5) / 2.

Để phương trình có nghiệm nguyên, a² - 5 phải là bình phương của một số nguyên. Ta có thể tìm các giá trị nguyên của a bằng cách xét từng giá trị nguyên cho a và kiểm tra xem a² - 5 có phải là bình phương của một số nguyên hay không.
Ví dụ, nếu a = 1, ta có:

a² - 5 = 1² - 5 = -4,

-4 không phải là bình phương của một số nguyên, vì vậy a = 1 không phải là giá trị riêng của đa thức.

Tiếp tục quá trình trên với các giá trị nguyên khác của a, ta sẽ tìm được giá trị của a mà khi thay vào phương trình (x + a)(x - a) + 5 = 0, phương trình có nghiệm nguyên là giá trị riêng.

b) Đối với đa thức (a - x)(5 - x) - 3:
Phân tích thành tích các đa thức bậc nhất có hệ số nguyên của đa thức này cũng tương tự như trên. Ta giải phương trình (a - x)(5 - x) - 3 = 0:

(a - x)(5 - x) - 3 = 0.

Tương tự như trên, ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a).

Ở đây, a = 1, b = 6 - a và c = -3.
Thay vào phương trình, ta có:

x = [(a - 6) ± √((6 - a)² - 4(-3)(1))] / (2)

Sau đó, ta tìm các giá trị của a mà làm cho phương trình có nghiệm nguyên.

Nguyễn Minh Dương
7 tháng 8 2023 lúc 15:02

Lại dựa vào AI đấy à?

Đức Lộc
Xem chi tiết
Pham Van Hung
15 tháng 11 2018 lúc 20:15

\(x^4-8x+63=\left(x^2\right)^2+2.x^2.8+8^2-16x^2-8x-1\)

\(=\left(x^2+8\right)^2-\left(4x+1\right)^2\)

\(=\left(x^2+8-4x-1\right)\left(x^2+8+4x+1\right)=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)

tth_new
13 tháng 3 2019 lúc 8:09

Cách hệ số bất định đây nhé:

Giả sử: \(x^4-8x+63=\left(x^2+ax+7\right)\left(x^2+cx+9\right)\)

\(=x^4+cx^3+9x^2+ax^3+acx^2+9ax+7x^2+7cx+63\)

\(=x^4+\left(c+a\right)x^3+\left(9+ac+7\right)x^2+\left(9a+7c\right)+63\)

Đồng nhất hệ số,ta được: 

c + a = 0 (1)

ac  = - 16  (2)

9a + 7c = -8  (3)

Giải (1) được c=-a.Thay vào (2) được: \(ac=-a^2=c^2=16\)

Suy ra \(c=4\Rightarrow a=-4\) (ta thay vào (3) để loại c = -4 nên ở đây mình làm tắt)

Vậy: \(x^4-8x+63=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)

P/s: Ở đây là gặp may mắn vì đã chọn được 63 = 7 . 9 là đúng=) Còn chọn 63 = 1. 63 thì khó làm đấy=)

:(((
Xem chi tiết
nguyễn hoàng phương vy
Xem chi tiết
Hoa Hướng Dương
12 tháng 3 2022 lúc 11:20

Câu 1:8-x^3=2^3-x^3=(2-x)(4+2x+x^2)

Câu 2:Ta có:x^2-5x+4

=(x^2-2x5/2+25/4)-9/4

=(x-5/2)^2-(3/2)^2

=(x-5/2-3/2)(x-5/2+3/2)

=(x-4)(x-1)

->đa thức B là:(x-4)

->hệ số tự do của đa thức B là:-4

Ngân Khánh
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 14:16

Bài 2:

1)  \(x^2-4x+4=\left(x-2\right)^2\)

2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)

3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)

4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)

6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

HT.Phong (9A5)
10 tháng 8 2023 lúc 14:21

Bài 2:

7) \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\)

8) \(x^3+64=\left(x+4\right)\left(x^2+4x+16\right)\)

9) \(\left(a+b\right)^2-\left(2a-b\right)^2=\left(a+b+2a-b\right)\left(a+b-2a+b\right)=3a\left(-a+2b\right)\)

10) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a\cdot2b=4ab\)

11) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2a\left(3a^2+b^2\right)\)

12) \(\left(6x-1\right)^2-\left(3x+2\right)^2=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)=\left(9x+1\right)\left(3x-3\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 14:28

1:

1: ,4x^2-6x=2x(2x-3)

2: 9x^3y^2+3x^2y^2=3x^2y^2(3x+1)

3: x^3+2x^2+3x=x(x^2+2x+3)

4: 2x^2-4x=2x(x-2)

5: 3x-6y=3(x-2y)

6: x^2-3x=x(x-3)

7: 6x^2y+4xy^2+2xy

=2xy(3x+2y+1)

8: 5x^2(x-2y)-15x(x-2y)

=(x-2y)(5x^2-15x)

=5x(x-3)(x-2y)

9: =3(x-y)+5y(x-y)

=(x-y)(5y+3)

10: =(x-1)(3x+5)

11: =2(2x-1)-3(2x-1)

=-(2x-1)

Đặng Trọng Sơn
Xem chi tiết
le ngoc hieu
30 tháng 10 2017 lúc 19:30

ak

x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0

Đặng Trọng Sơn
30 tháng 10 2017 lúc 19:33

bn nói j vậy bạn

Đặng Trọng Sơn
30 tháng 10 2017 lúc 19:34

bn vui lòng làm ra từng bước cho mk dc ko???

Vũ Khánh Linh
Xem chi tiết
Big City Boy
Xem chi tiết
Buddy
6 tháng 2 2021 lúc 15:16

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM