a>b>0.CM:\(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\) Giúp,...................
Cho a>b>0. CM \(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)
Áp dụng BĐT Cosi cho 4 số ta có:
\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)
\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)
\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)
\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)
Cách giải: Linh Vy. Trình bày: Nhật Quỳnh
Chứng minh \(\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\ge2\sqrt[4]{\left(a^2-a+1\right)\left(b^2-b+1\right)+\frac{1}{8}\left(a-b\right)^2}\)
Với a, b >0.
Liệu có thể chứng minh?
cho a, b>0 và a+b=1. CM:
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)
\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)
<=> Sai đề
1. Choa>b>0 . CMR:
a. \(a+\frac{1}{b\left(a-b\right)}\ge3\)
b. \(a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
c. \(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
1. Cho a > b > 0 .Chứng minh rằng :
\(a,a+\frac{1}{b\left(a-b\right)}\ge3\)
\(b,a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
\(c,a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
Cho a,b,c>0
CMR \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
MỌI NGƯỜI GIẢI NHANH GIÙM NHA
cho a b c > 0. Chứng minh các bất đẳng thức :
1, \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
3, ( 1+a+b) (a+b+ab) \(\ge9ab\)
4, \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
5, \(3a^3+7b^3\ge9ab^2\)
6, \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
Câu 1: cho các số dương a,b,c. CM BĐT: \(\sqrt{\frac{a}{b+c}}\)+\(\sqrt{\frac{b}{c+a}}\)+\(\sqrt{\frac{c}{a+b}}\)>2
Câu 2: CMR \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)\(\ge2\)với a,b dương
2. Bạn kiểm tra lại đề: VP = 1/2
Ta có:
\(\sqrt{a\left(3a+b\right)}=\frac{1}{4}.2.\sqrt{4a\left(3a+b\right)}\le\frac{1}{4}\left(4a+3a+b\right)=\frac{1}{4}\left(7a+b\right)\)
\(\sqrt{b\left(3b+a\right)}=\frac{1}{4}.2.\sqrt{4b\left(3b+a\right)}\le\frac{1}{4}\left(4b+3b+a\right)=\frac{1}{4}\left(7b+a\right)\)
=> \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{1}{4}\left(7a+b\right)+\frac{1}{4}\left(7b+a\right)}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Vậy: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\) với a, b dương
Hai số a,b thỏa mãn \(\left\{{}\begin{matrix}a,b>0\\\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)\ge4\end{matrix}\right.\)
Chứng minh \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge2\)
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).