Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
1. Choa>b>0 . CMR:
a. \(a+\frac{1}{b\left(a-b\right)}\ge3\)
b. \(a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
c. \(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Với 0 < a,b,c < 1. Chứng minh rằng:
\(\frac{1-a}{1+b+c}+\frac{1-b}{1+c+a}+\frac{1-c}{1+a+b}\ge3\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr:
\(\left(\frac{4}{a^2+b^2}+1\right)\left(\frac{4}{b^2+c^2}+1\right)\left(\frac{4}{c^2+a^2}+1\right)\ge3\left(a^2+b^2+c^2\right)\)
1.Cho tam giác ABC. Chứng minh:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
2. Cho x, y, z > 0 và xyz = 1. Tìm giá trị nhỏ nhất :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
với ∀a,b,c thuộc R, CMR:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
Cho a > b > 0. Chứng minh rằng:
\(a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Chứng minh các BĐT sau:
a/ \(2\left(a^4+1\right)+\left(b^2+1\right)^2\ge2\left(ab+1\right)^2\)
b/ \(3\left(a^2+b^2\right)-ab+4\ge2\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\)
1.Cho \(0\le x\le3,0\le y\le4\). Tìm giá trị lớn nhất của biểu thức:
\(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\)
2. Cho \(a\ge3,b\ge4,c\ge2\). Tìm giá trị lớn nhất của biểu thức :
\(A=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)